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PREFACE.

number of text-books dealing with the present subject is

already so large that a few words are necessary to explain

the reason for an addition to that number. For some years the

author has been engaged in lecturing on electrical matters to the

students of Engineering at the Engineering Laboratory, Cambridge,
and he has experienced a difficulty in recommending to the men
a suitable book on this subject. In the course of study for the

Mechanical Sciences Tripos the subject of Electrical Engineering
is but one of several, and consequently a student has not the time

to devote to a proper study of the larger books already available

either in English or German, and the smaller books scarcely cover

the ground with which the course deals. Hence it was felt that

a compilation of the more important points was desirable. It was

also hoped that such a compilation might possibly be of some use

to teachers in general. In such a book as the present, dealing

merely with the broad outlines of the subject, little that is not

common knowledge can be embodied, and hence very few refer-

ences are given. To the student such references are merely

distracting, and to a more learned person (should such a one

honour the author by reading the book) they are unnecessary.

The treatment of the question is largely based on the use of

vectors, supplemented by simple analytical methods when it is

desired to obtain numerical results. The symbolic treatment

has been found by the author to appeal to a very limited number

of students, and hence has not been used. Throughout the

expressions are worked out in general terms that is, no attempt
is made to distinguish in the formulae whether absolute or

practical units are employed. The necessary addition to all the

formulae of the proper factors renders the expressions unwieldy
and cumbrous : the student who has proceeded to this point in his
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IV PREFACE

subject should experience no difficulty on this score, and numerical

examples are worked out, which will serve to indicate the proper
factors that should be used in each case.

It may strike some that the subjects treated of differ widely
in importance, but they have been selected chiefly with a view to

the elucidation of matters of principle and as exemplifying special

points of theory.

Throughout the book there is no descriptive detail; in the

author's opinion, such detail is far more profitably obtained either

by actual contact with drawing-office work, or by careful perusal
of the contemporary technical press : further, the size of the book

necessarily prohibited the inclusion of any such details.

The author desires to thank the following gentlemen : Mr G. T.

Bennett, M.A., Emmanuel College, for valuable help in some of

the geometrical constructions, Professor B. Hopkinson, M.A.,

Trinity College, and Mr C. E. Inglis, M.A., King's College, for

communicating certain results, Mr T. H. Schoepf for figures 71

and 72, and Mr H. Rottenburg, M.A., King's College, for kindly

looking over the proofs. He desires also to thank the British

Westinghouse Company for lending the blocks for figures 51, 86,

161, 162, 163, and 174; and the Cambridge Scientific Instrument

Company for figures 93, 98, 99, 100, 101 and 103.

In a book of this description errors of various kinds are certain

to appear. The author would be grateful if any one using the

book would communicate such errors to him.

ENGINEERING LABORATORY,

CAMBRIDGE.

August, 1906.
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CHAPTER I.

SOME PROPERTIES OF SIMPLE HARMONIC QUANTITIES.

Alternating electromotive force. Let a coil of wire be

arranged as in Fig. 1, in such a way that it is capable of rotation

about an axis and has its ends joined to two rings attached to the

axis, on which fixed brushes can press. Further let a magnetic
field of any form be present, the direction of the lines of force

being perpendicular to this axis. When the coil has a position
such that its normal is in the direction of the lines of force, the

total flux passing through it will, in general, be a maximum and
in any other position, will be a function of the angle 0, between
the normal to the coil and the direction of the lines of force

;
let

this function be denoted by f(B). If the coil be rotated the flux

will undergo a rate of change and an E.M.F. will be generated in

the coil of the amount given by the expression e = ~rf(0). This

7 7/1

can be written in the form e = j/i/W -~Ji- If tne rotation be

made with the uniform angular velocity, o>, we can replace -j- by ay,

and hence the expression becomes in this case e = a)f'(&). If

n denote the number of rotations per second, the time r taken

by one rotation will then be r = -. This time is called theJ n

periodic time of the rotation. In such a case it is evident that

the value of e will be the same at intervals of time each equal to

T whatever the initial position of the coil may be.

The shape of the curve connecting the E.M.F. and the time will

evidently depend on the form of the curve connecting 6 and /(#).
This relation depends on several factors, for example the distri-

bution in space of the flux that is cut, and the form of the coil both
as regards the shape of the successive turns and the distribution

of them in space. These points will be considered in Chapter IX.

L. 1

Ml



2 ALTERNATING CURRENTS

Simple harmonic E.M.F. The simplest case is afforded by
a uniform distribution of flux and a coil with all the turns

practically concentrated in one place. In this case we can easily

evaluate the expression for /(#). Let a denote the area of one

turn of the coil, T the number of turns, and let the field in which

the coil rotates be such as to produce a flux of B lines of force

per square centimetre. If we reckon the position angle from the

Direction
ofMotion

Fig. 1.

place where the normal to the coil and the direction of the flux

coincide, as mentioned before, it is evident that the relation

between the flux, </>,
that passes through the coil and its position

is given by the expression </>
= a.B . cos 6, hence in this case the

relation between 6 and the E.M.F., e, at any instant will be given by
e = aBTa) . sin 0.

For a definite angular velocity we can put E for the maximum
value of this E.M.F. and we then get

e = E sin

where E = aBTa) = 2irn . aBT.

In this case the E.M.F. is said to be a simple harmonic one, and
can then be represented by any of the methods usually employed
for representing a simple harmonic quantity. The principal
methods are as follows (see Fig. 2).

(1) By the trace of sine or cosine curve whose maximum
ordinate is E.

(2) By the projection of a vector of constant length E on any
line, either the vector or the line being considered to be rotating
at the constant angular velocity &>. If the vector be considered

as rotating, positive direction of the quantity can be assumed
to correspond to the vector pointing say, upwards, and negative
values to the opposite direction of pointing : when the line rotates,

the sign of the quantity will depend on which side of this line the

projection falls.
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(3) By a Zeuner Diagram consisting of two circles of the

diameter E placed with the diameters in a line and touching
at the common point, as in Fig. 2. When any line rotates

about the centre with the angular velocity co the part intercepted

by the circles is evidently proportional to the sine of the angle

Fig. 2.

reckoned from the common tangent, and thus gives the instan-

taneous value of the varying quantity. Each of these methods
has its special advantages for special cases; the first two are,

however, by far the most important in the consideration of

electrical matters.

Since the rotation of the coil takes place with constant angular

velocity, it is a matter of indifference whether the independent
variable be taken as the angle or the time. The one can always
be converted into the other if it be remembered that the time r

corresponds to a complete rotation of the coil, or to the time taken

by the coil to return to its original position, that is, to turn

through the angle 2?r. Hence if be the angle through which

the coil has turned in the time I we have the relation

T

The direction in which the time is reckoned must be carefully
borne in mind. When the quantities are represented by sine

curves the axis of x can be taken either to represent the time

or the angle as we have seen : the positive direction of time will

be taken to correspond with x increasing in value, that is if a^ and

x* are two values of the abscissa, the latter being the greater, the

events corresponding to the latter value will be considered to have

occurred subsequently to those corresponding to the first. Again
in the second or third case we can let the rotation take place
either clockwise or in the opposite direction, in general it will be

taken that counter-clockwise turning corresponds to the efflux

of time. Thus if three lines be drawn as in Fig. 3, the rotation

12



ALTERNATING CURRENTS

taking place as shown by the arrow, the events corresponding to

the position OB will be considered as taking place after those

Fig. 3.

corresponding to OA while in the same way the events cor-

responding to OC precede those corresponding to OA
;

this is

expressed by saying that OB lags after OA and OC leads on OA.
The case where the varying quantities are taken as being

simple harmonic in nature is the one usually considered most fully
as the relations can be easily treated either by simple analysis or

by one of the graphical representations mentioned above. We
shall see later on, that any alternating quantity can be considered

as made up of a series of simple harmonic ones the successive

periodic times of which diminish in the ratio of the natural

numbers, and hence the most complicated case can be treated

as a sum of such quantities. It is thus very important to consider

this case first.

Mean Value. It is evident that if e = E sin 6 the mean
value of e is zero over the complete period, and in this case it is

usual to take as the mean value the mean for one half of the

curve, from one zero value of the ordinate to the next. In the

present case this becomes

mean = -| sin 0.d0 = -
\

- cos 6
\

= -E = 0'637E.
7T

~\n 9
M =-E = 0'

Jo 7T

Virtual Value. A much more important quantity is that

known as the virtual value of e. In all cases we know that the

rate of generation of heat depends on the square of a current or

pressure, and hence that the mean rate of production of heat will

depeud on the mean value of this square. The square root of

this mean square is called the virtual value of the corresponding
quantity, and we will denote it by the letter S. In this case, then,
we have

E 2 f 27r E 2 r 2ir E 2 E 2
'2 = ^'- sin2 0.d0= (1 -cos 20).d0= . 2-7T= -

.

27rJo 47rJo 4-7T 2

Hence g= or 0'707E.
Vz
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This relation is very important ;
we will later on discuss the mean

and virtual values of alternating quantities which are non-

sinusoidal, in which cases the relation between maximum, mean
and virtual values is quite different.

MEASUREMENT OF CURRENTS AND PRESSURES.

The dynamometer. Consider two coils of wire the one

carrying the steady current C^ the other the steady current C2 .

Then in general there will be mechanical forces and couples
exerted between the coils. The current C^ will produce a definite

field at every point of the coil carrying C^, which field will be

proportional to C\. Since the force between any element of the

Fig. 4.

coil carrying (72 and the field produced by Cl at that place is

proportional to the product of the current (72 into the field in

which it is placed, the force or couple between the two will be

proportional to the product (7,(72. If the coils be symmetrical
about a common axis, and have their normals at right angles, it is
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evident that from symmetry, only a couple will be produced.
Now let the coil carrying (72 be freely suspended and provided
with some means for allowing the current to flow in and out of the

coil without producing any friction, such as having its ends dipping
in cups filled with mercury. This coil will tend to be turned by
the couple into such a position that the flux it embraces is the

maximum possible. If by any means we apply an opposing

couple, capable of measurement, of amount exactly equal to that

between the coils, the value of this couple will measure the

product of the currents.

An instrument made on these principles is called an electro-

dynamometer or, for shortness, simply a dynamometer. Fig. 4
shows such an instrument of a usual type. In this form the

normal configuration of the system is such that the axes of the

two coils are perpendicular, and this condition is shown to exist

by the pointer / which is attached to the swinging coil A, being
midway between the stops S. The swinging coil is carried by
a fine torsionless thread attached at the bottom to the coil and at

the top to a pin fixed to the movable torsion head H. By adjusting
this pin the coil can be made to swing quite freely with its ends

dipping into the two mercury cups shown. A helical spring is

attached at one end to this coil and at the other end to the torsion

head, as shown, so that the indications of this head on the scale

shown will measure the couple that is being mechanically applied
to the swinging coil. The fixed coil B is attached to the frame
of the instrument, and the two coils are connected to the sources

of the currents (7X and C2 . When the currents pass, the torsion

head is turned till the index / is midway between the stops, and
if a is the nett angle of twist applied as read by the pointer P, we
must then have

C,C2
= k*. a.

For the couple due to the interaction of the two currents is

proportional to the product C^C*, while the couple due to winding
up a helical spring is proportional to the angle of twist imparted
to it.

If the same current, (7, be sent through the two coils put in

series we evidently have C = k^Ja.

Now let the current be an alternating one of any form : at any
instant the couple will then be proportional to the square of the
current at that instant. Owing to the inertia of the suspended
coil the actual mean couple experienced by the suspended coil will

be the mean of the instantaneous couples, in other words when the
torsion head is turned till the initial configuration is reproduced, the

reading of the head will be a measure of the mean of the instan-
taneous squares of the current, or if ^ is the square root of this

s

sum, that is the virtual current, we have ^= k\/a. It should be
noted that the value of the multiplier k is the same as when a
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steady current is flowing. The dynamometer has, then, the very
important property that the constant obtained in calibration with

steady currents can be used for measuring the virtual value of an

alternating one independent of the periodicity or form of that

current. There are many other current measuring instruments or

ammeters which can be used for the measurement of this quantity,
but few of them possess this valuable property.

For reasons that will be better appreciated later on it is very
difficult to make a pressure measuring instrument of this type in

the ordinary way, that is by giving the circuit of the instrument a

very high resistance.

Hot-wire Instruments. Another property depending on the

square of the current, and thus capable of being used for the

measurement of a virtual current, is the heating of a wire. If

a current be flowing down a wire the rate of production of heat is

proportional to the square of the current, and hence the mean rate

of production will be proportional to the square of the virtual

value of that current if it be alternating. A wire carrying such

a current will eventually get to a steady temperature which will

depend on the emissivity of the wire and the mean rate of

production of heat. In consequence of this rise of temperature
it will increase in length, and the increase will be a measure of the

square of the virtual current. This alteration in length is as

a rule very small and a common way of magnifying it is shown in

Fig. 5.

The wire W, W is attached to a base which has the same

temperature coefficient as the wire so that any alteration of

temperature of the whole instrument will not affect the length

of the wire. A small sag is allowed in the wire which is taken up
by a fine wire which is fixed at one end F to the frame of the

instrument, and pulls sideways at the point M as shown. This

wire in turn has a slight sag which is taken up by a fine thread

attached to" it at N, the other end being attached to a spring S fixed

to the case, on its way this thread passes round a pulley P which has
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attached to it the pointer of the ammeter and is pivoted to the frame.

It will be seen that any sag in the original wire is thus greatly

magnified. It will be evident from the method of operation of

the ammeter that if the instrument be calibrated with steady
currents the same calibration is correct for measuring virtual

currents. The wire is in general very fine and only capable of

carrying very small currents. When it is required to measure
currents of ordinary magnitude this fine wire is shunted with a

suitable shunt. By the use of proper precautions it is possible
to use this type of instrument for measuring virtual volts

;
for

this purpose a high series resistance is used just as in the case of

an ordinary volt meter, but this resistance must possess the

property of being quite
" non-inductive

"
for a reason that we shall

see later on.

Electrostatic voltmeter. It is possible to use the properties
of condensers for the purpose of measuring virtual pressures. We
know that the energy stored in a condenser is given by the

expression ^e
2
.F, where e is the applied pressure, and F the

capacity of the condenser.

Let a condenser be provided with one of its plates capable of

rotation about an axis : one form is shown diagrammatically in

Fig. 6. Then if by any means the relative position of the

condenser's plates changes, the capacity of the whole will change

Fig. 6.

by a definite amount. The change of capacity will depend on the
form of the plates and the angle through which the movable one

turns, and for a definite form of plate, it will depend on the angle
only. Thus if the plate move through an angle a. the capacity will

change by some definite amount, /(a). If a pressure e is acting
between the plates the consequent change of energy will be

^e
2

y*(a). Now if the moving plate be provided with a controlling

couple, any motion will produce a couple tending to turn the plate
back, and this couple will depend solely on the angle of rotation
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when the nature of the control is fixed. Thus again the work

done, being dependent on the integral of the product of the couple
and the corresponding small angular rotation, will be a function of

that angle only; let it be denoted by F (a). When the plate gets
to a position of equilibrum, the two amounts of work must be

equal, which gives
or

Hence there will be a definite relation between the pressure
and the resulting angular motion of the pivoted plate, and it

follows that this angle can be taken as a measure of the pressure.

When alternating pressures are employed, it will follow in

exactly the same way as in the case of the dynamometer, that the

mean position of the plate will correspond to the mean of the squares
of the instantaneous pressures, since the inertia of the suspended

plate will integrate up all the instantaneous applied couples. Thus
the instrument being calibrated with steady pressures will indicate

on the same scale the value of the virtual pressure when alternating

pressures are employed. Such an instrument is called an electro-

static voltmeter.

Periodicity measurement. It is very often of importance
in laboratory work to have some means of ascertaining the

periodicity of the current that is being used. This is usually
found by means of the forced oscillations of a tuned reed. If a

reed of steel be placed in the field of an electromagnet which is

being energised by the alternating current it will vibrate very

strongly when the natural period of the reed is the same as that

of the alternating magnetic field acting on it. Two methods can

be adopted ;
the more accurate is to provide a set of tuned reeds

whose periodic times are within the desired range of periods and
which differ successively by say two periods per second in their

own pitch. By presenting these reeds in succession to the magnet
the periodicity of the current can be found from noting the reed or

pair of reeds that respond. A single reed could be used if it was

possible to arrange so that its natural period could be conveniently
altered. Such alteration is readily produced by changing the length
of the reed, and the periodicity teller due to Mr Campbell acts in

this way. A reed is taken whose length can be altered at will by
means of a rack and pinion arrangement, the pinion of which is also

attached to a pointer working over a graduated circular scale. The
reed is acted on as before mentioned by an electromagnet which is

generally placed with its winding in circuit with an incandescent

lamp suited to the supply pressure, and the condition of synchro-
nism between the reed's period and that of the current is shown by
the sounding of the reed when it is caused to vibrate. The calibra-

tion of the instrument is best performed experimentally.
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In cases where a small range of periodicity only is required,
the following instrument, due to Mr Frahm, is convenient. Con-
sider a set of little reeds all exactly tuned to vibrate at known

periods differing say by half a period from one another and

covering the range of periods required. Let these all be fixed to

a base forming a sort of comb. Then if this comb be shaken, the

reed which has a natural period equal to that of the shaking period
will be violently agitated, the others being practically at rest.

Such a comb of reeds is arranged in such a way that it can be
acted on by an electromagnet attracting the base to which the

comb is fixed, and the magnet is supplied with a current from the

source of energy of which the periodicity is to be found. The

required periodicity will be shown by the corresponding reed

vibrating : if the period lies between those of two adjacent reeds,

each will respond, but to a diminished extent. Thus the periods
can be found with quite sufficient accuracy for most purposes.
Such a set of reeds has the advantage of permanence.

Angle of Lag or Lead. In many cases we have to consider

problems where several simple harmonic quantities all having the

same periodic time are existing at the same time. For the sake

of simplicity consider two only having the amplitudes A and B.

If these two attain their zero values at the same instant, as shown
in Fig. 7, the two are said to be in phase and will be represented by

Fig. 7.

two vectors drawn in the same direction but of different lengths.
It may happen that the zero of one is not attained till some definite

fraction of an alternation after the other attains its zero in which
case there is said to be a difference of phase between the two.

If they attain those values as shown in Fig. 8 they are said to
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be antiphased and will be represented by two vectors drawn in

opposite directions. Again let the two quantities be given by

B

Fig. 8. Fig. 9.

the curves in Fig. 9. One of the quantities attains its zero at the

value of the angle given by the origin, that is the arbitrarily chosen
initial zero value, while the other does not attain its zero till the

angle X has been traversed
;
hence the angle X will be the difference

of phase between the two. In the figure it will be seen that B does

not attain its zero till after A has done so, and this is expressed by
saying that B lags after A. On the other hand, if we are referring
matters to the curve B it is seen that A attains its zero before B,
which is expressed by saying that A leads B. The vector repre-
sentation of this case is in the figure ;

the two vectors are drawn
of the lengths corresponding to A and B and with the angle
X between them. Since positive time has been taken to coincide

with counter-clockwise revolution, the angle X must be taken as in

the figure, in order that B may have its maximum projection after

A. When the angle of lag or lead becomes a right angle, the two

quantities are said to be "in quadrature
"
or sometimes "at quarter

point." In this case if one be given by a = A sin 6, the other can
be written b = B cos 6.

With more than two such vectors representing other simple
harmonic quantities each must be drawn with its proper phase

angle with respect to one selected vector.

The analytical representation of an angle of lag or lead can

be easily derived. Let the quantity a be given by

a = A sin 6,

then the other quantity will be expressed by

b = B sin (6
-

X).

For the angle B being reckoned from the origin as shown, b does

not attain its zero value till the angle X has been traversed, hence

the value of 6 at which 6 is zero is X. It follows that the expression
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above satisfies this condition, for when 6 is equal to X, sin(# \)

is zero. Thus a negative sign to the phase angle implies that the

corresponding quantity is lagging on the standard quantity.

It will readily be seen that the converse holds, that is to say
a positive sign to X means a lead. For since b lags after a it

follows that a leads 6. Now instead of taking a as the standard

let us take 6, then it must be written as 6 = B sin 6 and the origin
is now the point where b is zero. But a has attained the zero

value before 6 has done so, and at the time when B was ( X).

It evidently follows that the expression for a will now be

a = A sin (0 + X).

Thus the question of lead or lag and its mathematical expression
must depend on which of the quantities is taken as the standard

of reference.

It is evident that with these sinusoidal quantities any two

symmetrically situated points, as for example the maxima, could

have been taken in considering the question of relative phase.

Summation and resolution of harmonic quantities. The
summation of simple harmonic quantities can be made by the

ordinary parallelogram method, but the quantities must necessarily

B

Fig. 10.

be of the same nature. Thus in Fig. 10 if OA and OB be two such

quantities, the resultant will be given by the diagonal OR.

Similarly the difference will be given by the other diagonal AB,
the direction of this diagonal will depend on which vector is being
subtracted

;
if OA is taken from OB the arrow-head must be put

pointing from A to B, while if OB is taken from OA. it must point
from B to A. If necessary this difference vector can be drawn
from the origin in its proper direction.

It also follows that any given quantity can be resolved into two

components along any desired directions, the most useful directions

are in general perpendicular to each other. Thus in Fig. 11 let OA
represent one quantity and OB another of a different class, lagging
by X on OA . Then we can resolve OB into two components, for
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example one along OA called the in-phase component 0(7, and the

other at right angles thereto, called the quadrature component CB.
The maximum values of these components are evidently given by
B cos X for the in-phase one, and B sin X for the other, and the

latter lags a right angle on the former. The corresponding repre-
sentation by curves can be found thus :

If OA is as before a = A sin then OB is 6 = B sin (6
-

X). The
latter can be written 6 = (B cos X) sin 6 (B sin X) cos 6, showing
that it consists of the simple harmonic of maximum value B cos X,

which is in phase with OA and the simple harmonic of maximum
value B sin X which is in quadrature with it. The curves repre-
sented by these expressions are shown in Fig. 11, the two components

Fig. 11.

of b being dotted in. This resolution into the two perpendicular

components is very important, and will be often required. Mani-

festly any number of vectors of the class OB can be similarly
resolved in the direction of OA and at right angles, and the sum
of the separate projections will thus give the total components in

the two given directions.

The rate of change and integral of a simple harmonic
quantity. In many problems the relation between a simple
harmonic quantity and its rate of change or its integral is of very
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great importance. Let us consider the case where it is expressed
in terms of the time, then

Thus we have -j- =

A sin pt

cos pt

and also fadt = cospt

- or -

a = A cos pt.

da .

fadt = sinpt.

In the latter case the constant of integration has been taken

as zero, which is always the case in alternate current work. These
results will be seen to be represented by the curves in Fig. 12

PA

Fig. 12.

where the axes for the sine case and for the cosine case are indicated.

In both it will be noticed that the rate of change leads on a by
a right angle while the integral of a lags a right angle, further the

former is p times as great as a while the latter is 1/pth of a. The
vector representation of these cases is evidently as shown in the

same figure.



CHAPTER II.

CURRENTS DUE TO SIMPLE HARMONIC PRESSURES.

Current due to Simple Harmonic E.M.F.s. If a simple
harmonic E.M.F. be applied to a circuit containing nothing but
ohrnic resistance it is evident that at every instant this E.M.F. has

only to overcome the resistance of the circuit
;
in other words if c

denote the resulting current at any moment, e the corresponding
E.M.F. and R the resistance, we must have e = cR, thus the E.M.F.

given by the equation e=Esinjt^ will produce the current

c = -^ sin pt. In such a case the current curve will be an exact

copy of the E.M.F. curve and there will be neither lead nor lag.
It will be seen, further, that even if the E.M.F. be non-sinusoidal

the same relation holds, and that the two curves will have exactly
the same shape ;

this point will be of importance later on.

Circuit with Self-Induction. If a circuit contain self-

induction as well as ohmic resistance the case is different. At

any instant the current produced will have a definite rate of

change, and we know that a circuit of which the coefficient of

self-induction is L is such, that when a current c is flowing there

is a flux of magnetism of the amount Lc passing through it.

Hence there will be an E.M.F. produced in the circuit itself, and
the amount of that E.M.F. will be connected with the rate of change

dc
of the flux as shown by the equation eg = L -=-

, eg being the

instantaneous value of this induced E.M.F. The ohmic resistance

of the circuit will demand that a certain pressure be supplied to

force the current round the circuit, and the amount of that

pressure will be er
= cR. Now the pressure that exists at any

instant at the terminals of the circuit must be of such an amount
as to just suffice to send the current down the resistance and to

supply a pressure equal and opposite to eg ,
since if this condition

be fulfilled the circuit will be in a state of equilibrium. Hence
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the E.M.F. e applied to the circuit must at each instant be given

by the equation

e = cR 4- L -j- .

at

The E.M.F.S mentioned above receive special names, e is called

the impressed pressure, es the induced pressure, its negative being
known as the back or reactance pressure, while er is called the

effective pressure. It should be noted that the latter is the only
one concerned in the dissipation of energy, the term due to the

self-induction corresponds to energy which is alternately stored in

and restored by the circuit.

Impedance and Reactance. Let the current flowing in

the above circuit be taken as sinusoidal and be represented by

c = C sin pt,

dc
so that

-j-
=pC cos pt.

Then the equation connecting the E.M.F. and this current will be

e = CR . sin pt +pLC cos pt
= C (R sin pt + pL . cos pt).

If we put I 2 = Rz + L'2p*,

then e = CI (
-j

sin pt + *y-
cos pt

j
.

This equation can be simplified as follows : let X be the angle

given by

then e = CI (cos X . sin pt + sin X . cospt)
= CI sin (pt + X).

If we denote the maximum value of e by> E we have E = C . /.

That is, if the current be c = C sin pt the E.M.F. will be

e = E sin (pt + X),

the values of E, X and / being defined as above.

If instead of starting with the current as given we take the

E.M.F., it evidently follows that when the E.M.F. e = E sin pt is

applied to the circuit the current produced will be

c =
-j

sin (pt X).

Hence in such an inductive circuit the current will lag after the

pressure by the angle whose tangent is given above, and the

maximum value of the current is
-j

instead of -~ as would be the

case with a non-inductive circuit. The quantity I is called the
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Impedance of the given circuit, the product Lp being designated
the Reactance.

The following case is of interest as illustrating the above

points. Let a coil be made of a large number of turns and as low

a resistance as possible and place in series with it a non-inductive

resistance such as one or more incandescent lamps. If the pressure
at the terminals of each of the two sections and at the terminals

of the whole be measured, it will be found that the square of the

latter is very approximately equal to the sum of the squares of the

former. In this circuit the inductive coil may be looked on as

producing the back E.M.F. in the whole circuit, while the lamps
provide its resistance

;
we can thus measure separately these

components which it is not usually possible to do in an ordinary
circuit. It will be noted that complete separation of the two
E.M.F.S is impossible since the coil must dissipate some energy
owing to the impossibility of making it quite devoid of resistance.

Circuit with Capacity. Consider the case of a circuit made

up of a resistance in series with a condenser of capacity F and let

a sine E.M.F. be applied. We know that when a condenser of

capacity F has a pressure of e volts applied to its terminals, a

quantity of electricity given by q = eF passes. Hence if a varying
current c be flowing, since c = dq/dt the relation between the

pressure and this current is c F-r or the pressure is related to

the current by the equation e
j^lc

.dt. No constant of integra-

tion will be required since, in the case of an alternating pressure,
no permanent charge of the condenser can ensue. If the current

flowing be written c = Csin^, the pressure at the terminals of

the whole circuit will have to equilibrate this pressure as well as

to supply that required to overcome the ohmic resistance
;

it will

therefore be
/-\

e = CR sin pt -~- cos pt.

Hence if, as in the last case, we put I2 = Rz + -=^
--

, E = C . /, and

tan X = -, ,
we can easily see that e=E. sin (pt X).

It follows that if the pressure be given by e = E sin pt, the

current will be given by

c = j sin (pt + X).

Hence the effect of such a condenser is to cause the current to

lead the pressure at the terminals of the circuit by an angle
whose cotangent is FRp, the value of the current being still

diminished in this case.
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The case where all three quantities R, L and F are present in

series in the same circuit can be readily deduced. It can be seen
at once that if the applied pressure in this case be e = E sin pt,
the current will be

c = - sin (pt \),

where

and tan X

~
=-

^
-

.

Hence we may have either an angle of lag or one of lead depend-
ing on whether Lp is greater or less than l/Fp. It should be
noticed that if LFp2 1 the angle of phase difference vanishes,
and in this case the impedance becomes simply equal to the

resistance. This is sometimes referred to as the case of resonance,
for if such a circuit contained capacity and self-induction only, the

current would be in that case infinite. Even when resistance is

present this relation leads to the production of very high pressures
at the terminals of the different parts of the circuit.

Capacity and Impedance in Parallel. The following case

is of interest. Let an inductive circuit be in parallel with a

capacity. We will show that for some definite capacity the
current is a minimum and then the pressure at the terminals and
the total current flowing up to the two are in phase. If the
letters have the same meaning as in the last case, and if cx denote
the current in the coil and c2 that in the capacity we have

cx
= sin (pt X),

de
and since c2 = F -r and e E sin pt we have

c2 = E.Fp cos pt.

Hence the current flowing into the two will be c = c + c2 or

c = -
{sin (pt X) + FIp . cos pt}.

This can be written

E
c

-f (sin pt cos \ cos pt . sin X -\- FIp . cospt).

But sin X = -*- and cos X =
-j

.

Hence c=E\j2 smpt - (-j^-

-
Fpjcosptl

.
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If we put tan^ =
(L

~J
/2)

P,

(fLj) \
2 j?2) i

this becomes c = E
j(~77~^jp)

+
74f sin(;rf ^).

The current taken by the two in parallel will evidently be a
minimum when the multiplier is a minimum and since it is a sum

of two squares this will be the case when -~ = Fp or L = FI-.

Then it follows that tan
-\fr

is zero, or the current and the terminal

pressure are in phase. It may be noted that when the resistance

of the first circuit is small compared with the self-induction,
/ becomes very nearly Lp, and hence the relation giving no lead
or lag is LFp

z =1 or
,

the same as for the case where the capacity
and induction are in series.

Vector representations. The consideration of different

forms of circuits is more simply carried out by the use of the
vectorial representation and we will now briefly work out a few
such cases. Consider that of a coil possessing resistance and
self-induction only, as taken on p. 15. It was there shown
that such a circuit possessed a quality called its impedance, and
we can find the value of the impedance as follows. Draw a line,

OR, of such a length as to give (on an appropriate scale) the

Fig. 13.

value of the ohmic resistance of the circuit ; the product Lp for

the circuit, or its Reactance being given, let a perpendicular
line, LR, be drawn to give the value of this quantity on the same
scale, then since the impedance is given byP=R2+L2

p*, it is evident
that / will be represented on the same scale by OL ;

this triangle
is called the impedance triangle for the circuit. Now the angle
LOR is such that its tangent is Lp/R, and we saw that in the
circuit considered the current lagged after the pressure by that

angle. Thus if QV represents the pressure, the current flowing
will be given by the line QC drawn at the angle \ to Q V. These
two lines can be taken as giving either the maximum or the
virtual value of the corresponding quantities on scales appropriate
to either. It will be seen that if QV is parallel to OL, then QC
is parallel to OR, hence if OL be taken as the direction of the

pressure the line OR gives the direction of the current.

22
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It follows that we can adjust the scales of the different

quantities in such a way that OL shall either represent the

maximum pressure in the circuit or the virtual value, which is

taken being a matter of convenience.

In this case, on a chosen scale of pressure such that OL gives
the applied pressure, the lines OR and RL must also represent

pressures, that is the applied pressure can be considered to have

those components. Now if C be the current flowing it is evident

that OL will, on the scale of pressures, be of the length C . /, and
hence the pressure denoted by OR will have the value C . R and
that denoted by LR will have the value Lp . C; the former pressure
is (as before mentioned) the effective pressure and the latter the

reactance pressure, the first represents that part of the applied

pressure that is in phase with the current and is operative in

forcing the current against the resistance,
'

and the latter com-

ponent is operative in equilibrating the pressure produced by the

self-induction. Thus in Fig. 14, the applied pressure OF is

Fig. 14.

equivalent to the perpendicular components OT and TV, the

pressure induced in the coil due to its self-induction will have
the direction OS, lagging by a right angle on OC. This lag is

due to the fact that the induced E.M.F. is the negative change-rate
of the flux, and since on p. 14 we saw that the change-rate
of OC will be represented by the vector OU in the figure, its

negative must be represented by the equal and opposite line OS.
Hence the component of the impressed pressure that has to

equilibrate the self-induction E.M.F., or OS, must be equal to OS
and be in the opposite direction as is TV.

It will be seen that if C is the maximum current, the maximum
applied pressure is C.I, the maximum effective pressure is C . R
and the maximum back or reactance pressure is Lp . C

;
the virtual

values of the same quantities will be 1/V2 times these values since
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sinusoidal variations have been assumed in taking the vectorial

representations of the same.

Since the reactance, Lp, always occurs as a single quantity
when the applied pressure has definite periodicity, it will be
denoted by the symbol S, that is the reactance of the circuit will

be S where S = Lp.

Reactive circuits. Consider as an example the case where
a coil has a resistance of 10 ohms, a self-induction of 0*03 and the

periods are such that 2?m is 500. Then R = 10, S = 15 and / is

nearly 18. The impedance triangle is shown in Fig. 15. It

L,R.

75

10

Fig. 15.

follows that X will be such that its tangent is 1*5 or is about
56 20', so that whatever pressure is applied, the angle of lag
between the pressure and the current will be of that amount.
Let a pressure of the virtual value 100 volts be used, then the

current will be 100/18 or 5'55 amperes, the virtual effective

pressure will be 55'5 volts and the virtual back pressure will be
83'2 volts, the corresponding maximum values being \/2 times as

great.
A difficulty is sometimes felt in the case where the resistance

becomes vanishingly small relative to the reactance. In this case

the line OR vanishes but the current still flows in the direction of

that line, that is in the limit, at right angles to the pressure.
The impressed pressure vector and the back pressure vector in

that case exactly oppose, each having the value SC.

*~23-5 V - -65 V-~

Let the same coil be connected in series with a non-inductive
resistance of 5 ohms as shown in Fig. 16. The total resistance
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of the circuit is now 15 ohms and the reactance is, as before, 15,
hence the total impedance is 21*2 ohms, that of the inductive part
itself being as before 18. If a terminal pressure of 100 volts be

applied, the current will be 100/21'2 or 47 amperes, and the angle
of lag, A, between this pressure and the current will be evidently 45.
Thus the pressure across the ends of the non-inductive resistance

is 5 x 47 or 23'5 volts, while that across the inductive coil is

18 x 47 or 85 volts; the angle of lag, \, between this pressure
and the current is the same as in the first case.

Now let the second coil have in addition a self-induction such
that at the given periodicity its reactance is 2. Then its impedance
will be nearly 5'48. Thus the two impedance triangles are as

shown in Fig. 17. Being in series the whole circuit acts as if it

Fig. 17.

had a resistance of 15 ohms and a reactance of 17, hence the

complete figure is as drawn. The total impedance is 227 ohms,
and hence with a pressure across the terminals of 100 volts, the
current taken will be 4*4 amperes and the angle of lag, X, will be
such that its tangent is 17/15 or will be about 45^. The pressure
across the first coil will be 79'2 volts and that across the other
24'2 volts, the angle of lag, \i, for the first being still 56 20' while
for the latter the angle, A2 >

is 22. Certain arrangements of the
circuits may result in the sum of the pressures being the same as

the applied pressure, for example if the two impedance triangles
are similar this is evidently the case.

Condenser circuits. The vector representation of the case

of the condenser circuit considered on p. 17 can be treated in the
same way. The vector triangle can be drawn exactly as in the
last case, care being taken however to note that the current leads

the pressure. Thus if the condenser in circuit have a capacity of

25 microfarads and the periods multiplied by 2?r be 500, the value
of TL/Fp will be 80, for it must be remembered that F has to

be measured in farads : let the resistance be 60 ohms, then the
vector triangle will be as in Fig. 18, the current vector being drawn
with a negative angle relative to the potential vector in order to

show that the phase angle, whose tangent is \jFRp must be taken
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as giving the current a lead on the pressure at the terminals.

In this case the impedance is 100, so that if a pressure of 1000

60

. v.
80

< -1OOO.V.-*

78

60
80

1666.V.

100

60

80

Fig. 18.

volts be maintained across the whole circuit, the current will be
10 amperes, the effective pressure will be 600 volts, and the

pressure on the condenser will be 800 volts. The angle of lag has

a tangent given by 4/3 and is hence about 53.

The case where the resistance is inductive can be similarly
treated : let the coil have a reactance of 50. Draw the impedance
triangle for the coil as shown, and draw backwards from the top angle
a line equal to the value of l/FRp, that is to 80. The closing
line of the lower triangle evidently gives the impedance of the

whole circuit. Its value is 67, and the current with a terminal

pressure of 1000 volts is about 15 amperes, hence the pressure on
the ends of the coil is 1170 volts while that across the condenser
is 1200; the angle of lead is reduced to 27. In this case, then.
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either of the pressures can be greater than that across the whole

system.

Take the case where the reactance is equal to the condenser

effect, that is to say when IjFp is equal to Lp or FLp* = 1. In
this case the two vertical lines being equal annul one another, and
the total impedance reduces to the ohmic resistance, while the
coil's impedance is 100. Thus the current with 1000 volts

terminal pressure will be 16f amperes, the pressure on the coil

will be 1666 volts, and that on the condenser will be 1333 volts.

It will readily be seen that when the resistance is small, the

pressures on the two parts of the circuit may be many times the
terminal pressure.

Circuits in parallel. We will now consider the case of two
circuits in parallel, and as an example take the case where the
resistance of one circuit is 3 ohms and its reactance is 4 while for

Fig. 19.

the other circuit the resistance is 6 and the reactance is 3. The
impedance triangles are shown in Fig. 19 and the respective
values of the impedance are 5 and 6'5. Let the two be in parallel
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and have an applied pressure of 100 volts across their common
terminals. Draw a semicircle as shown with a diameter equal to

the value of the applied pressure on any assigned scale, then the

current taken by the first coil will be 20 amperes, the back

pressure will be 80 and the effective pressure will be 60, the

pressure triangle being shown with its sides numbered. Similarly
for the second coil the current will be 15'4 amperes, the back

pressure 46'2 and the effective 92'4, the pressure triangle being
also shown. Then the phases of the currents will be those of the

effective pressures ;
on the lines representing these pressures are

set off to any desired scale of current the values of the currents as

shown at OCl
and OC2 . The resultant current will then be given

by OC and its phase angle by X.

The value of the current will on scaling off be found to be

35 amperes. Evidently the two coils can then be replaced by
a single coil of such constants that it carries the current of

35 amperes, and its impedance triangle is as shown, the sides

being 65, 75 and 100. Hence the back pressure for that equivalent
coil will be 65 volts and the effective pressure will be 75 volts as

shown, thus the tangent of X is 65/75 or about 0'88, that is X
is about 41 1 . The equivalent resistance will be found by
dividing the effective pressure by the current, 35 amperes, and
is 2*62 ohms, similarly the equivalent reactance is 2'27.

Instead of actually drawing in the current vectors the value

and phase angle for the resultant can be found in the usual

algebraic manner. Thus if ^ and ^ be the virtual component
currents and X! and \^ their phase angles, if we resolve the

currents along the pressure line and perpendicular thereto we

evidently get
X = $; cos Xj + 2̂ cos X.2 = X

sin. X = Wj sm Xj + w-i sin X, = F,

which lead to ^ 2 = X 2 + F2 and tan X = F/X.

In the present case these equations are

X = (20 x 0-6) + (15-4 x 0-92) = 26'2,

X = (20 x 0-8) + (15-4 x 0-46) = 23'2 ;

the sines and cosines of X! and X, being readily found from the

impedance triangles.

This gives ^=35 and tan X = 0'88, the same as the graphical
solution.

As an example of the choice of a special scale for the current

vector we will consider the case of the condenser in parallel with

an impedance coil (p. 18). Let OF, Fig. 20, be the impressed

pressure vector and let OVR be the usual impedance triangle for

the coil giving its effective and back pressures. The line OR
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gives the direction of the current in the coil, and by suitably

selecting the scale of current, it can be likewise taken to give its

magnitude. The current flowing in the condenser will have the

value EFp and will lead the pressure, OF, by a right angle, being

given by the line OF. Now when the resulting circuit is such

that the phase angle vanishes, the current flowing into the

circuit must be such that it lies along OF, hence the current

in the coil must be such as to give this current when it is

combined with that through the condenser. Draw the line RX
perpendicular to OF, then the coil-current is equivalent to the

currents OX and RX of which the former is in phase with the

pressure, the latter with the condenser current. Hence when the

line current is in phase with the pressure, it will be given by OX
and the other component of the coil current (that is RX) must be

equal to the condenser current. But if / is the impedance of the

coil and E the pressure, the coil current is E//, and the component

RX is E sin X
;
but sin X is

-y- ,
and hence the component RX is

' P
. But this is equal to the condenser current or EFp, arid

hence we have

E.Lp=EFp.I 2 or L = F.I\

the result proved before.

It is unnecessary to multiply examples, since whether the

circuits have induction or capacity the same construction can be

applied, but further examples will occur incidentally in the con-

sideration of various problems.



CHAPTER III.

MEASUREMENT OF POWER.

Power. Simple harmonic pressure and current. We
have seen that in general the current produced in a circuit by an

alternating pressure is out of phase with it. The rate of doing
work in such a circuit will therefore not only vary from instant to

instant but may be negative at certain points in the alternation.

For example in Figs. 21 and 22 are drawn two curves, the one of

pressure the other of the resulting current. A third curve is

drawn such that at each point its ordinate is equal to the in-

stantaneous product of the two others, in other words, this

represents the instantaneous rate of working in the circuit. If

the original curves be both sine curves it is easy to evaluate the

instantaneous rate of working. For if the pressure be given by
e = E sin 6 and the current produced by c = C sin (6 X) the

instantaneous rate of working is

w = E . C . sin 6 . sin (0
-

X).

This can be written in the form

w =^ {cos X
- cos (2(9

-
X)},

which shows that the power is a function of the time which is of

one half the periodic time of the components. It will be seen that

the power has two positive portions in one alternation, and two

negative, vanishing therefore four times per alternation. During
the positive portions work is being done by the pressure on the

circuit, and during the others the energy stored in electromagnetic
or condenser action is given back to the generator. When the

angle of phase difference is zero we have

EC*
w = =- (1

- cos 2(9),

showing that there is no negative power, but that it falls to zero

only twice in an alternation. This must be the case as there is in
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this condition no means by which energy can be stored. The
other limiting case is when the phase angle is 90, when

w = -~- sin 20,

showing that the positive and negative regions are equal, and
hence no nett work is done in the circuit. This again must be
the case since the phase angle being 90 infers that the resistance

is zero, and thus energy dissipation must be absent. Since the

power is a function of the time of double the frequency of the

pressure or current, it follows that it cannot be represented by one
of a family of vectors connected with those two quantities.

The important quantity to consider is not, however, this

instantaneous rate of doing work, but the mean rate, and since

the two quantities are assumed to be of constant amplitude and

period, it is sufficient to take the mean over a single period of the

alternation. Now the work done while the small angle dO is being
traversed will be the product of the instantaneous rate of doing
work into that angle, and as a whole period corresponds to the

angle 2?r, the mean rate of doing work over the period will be
EC P27r

given by W = -= sin sin (0 - X) . dO. But this can be written
ZTT J o

as the sum of two integrals by using the substitution on page 13,
that is by considering the current as having the two components
respectively in phase with and in quadrature with the pressure.
We thus get

EC r
27r

W = -= I (sin
2

. cos X sin . cos . sin X) . dO,
ZTT Jo

, EC f
27r

f /I - cos 20\ sin 20
or W =^- ^cosX

But the integrals of sin 20 and cos 20 over a complete period are

necessarily zero, and hence we have

w EC EC
W = -= 7T . COS X = -TC COS X.

ZTT 2

With sine pressures and currents we know that the virtual value
is \/2 times the maximum, and hence we finally have

W = <&.caa\.

It will be noted that the integral corresponding to the quad-
rature component of the current contributes nothing to the power,
this is therefore usually called the Wattless component of the

current, the other component is the Power component of the
current. Thus if the current C cos (pt X) be flowing under the

pressure E smpt the wattless component has the value <^?
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while the power component is
<

^, = '^cos\. Thus if the quantity
OA in Fig. 11 represents the pressure in a circuit and OB is

the current, the dotted curves will be these two components of

the current.

Mean power in a vector representation. Although, as

previously mentioned, the instantaneous power cannot be repre-
sented by a vector, yet when the two vectors of pressure and
current are given it is possible to represent the mean power as

follows. Consider Fig. 11 and let OA be the vector representing
the pressure, that is one whose length is the maximum value of

the pressure or E, and let OB represent the corresponding current,
that is OB is equal to the maximum current C

;
then the angle

AOB is the phase angle, \. It has just been seen that the mean

power is given by the expression JEC cos \ and in this case the

projection OC of OB on A is the value of C cos X, hence the mean

power will be representable by one half the product of these two

lengths interpreted on an appropriate scale. If the vectors are

drawn to give the virtual values instead of the maximum ones,
the product gives the mean power directly.

In the case where various currents are flowing due to the same

pressure, it follows that the relative mean powers will be propor-
tional to the lengths of the projections of the current vectors on
the pressure one. It is important not to confuse the original
vectors with this product, which is what is called the "

scalar

product
"
of the original vectors

;
such a product is a mere number

and has no vectorial or directed properties.

In some cases it will be found more convenient to let the

projection of the pressure vector on the current one be taken
as a measure of the power, but it is evident that no essential

difference exists between the two methods.

Power factor. We see, then, that with alternating currents

the product of the pressure and current ^ give no indication of

the mean power that is being produced; that product must be

multiplied by a factor, cos\, to determine the power. This

multiplier is known as the Power Factor of the circuit in which
the current flows. The product,

r
$, is often called the apparent

power, and since it does not represent (in general) a true power,
it should not be designated by the term Watts. In cases where
the apparent power is spoken of, it is said to be reckoned in volt-

amperes or kilo-volt-amperes as the case may be.

Equivalent simple harmonic pressure and current.
Since in very many cases the currents and pressures are non-

sinusoidal it is of importance to consider the assumptions that

must be made in order that we may treat them as if they were

so, since the sine case is so easily dealt with by means of analysis
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or vectors. Take for example the two curves in Fig. 21 as

representing the case of a non-sinusoidal pressure and current.

As far as concerns the representation of the current, we could find
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It should be noted that the angle \ has no existence on the

original curves. It is not the angle between their zero values nor

between their maximum ones, in fact these would in general be

different; hence it must be bonie in mind that with non-sinusoidal

quantities the expression "cos X" must be taken as merely meaning
the power factor of the circuit, that is the number by which the

900-, 30
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Fig. 22.

product of the virtual pressure and current must be multiplied in

order to give the mean power, and if we wish to consider the

angle X as a truly existing one it can only be so considered when
we imagine the quantities to be replaced by their equivalent
harmonic representatives. It then comes to this, that an alter-

nating pressure and the corresponding current can be replaced by
two sine quantities provided these have the same virtual values

and represent the same mean power as the actual pressure and

current.

It may be noted that the only possible case in which the

power factor is unity is that in which the current and pressure
curves have the same form. Let c and e be the instantaneous

values of the same, the virtual values being <$ and ,
so that ^2

is

the mean value of c2 and * that of &. Consider the expression

(<@e <c)2 ; being a square it is positive and hence we have

<@* . ez + *
. c

2
is greater than 2 . ec . S^. This being instan-

taneously true is also true for the means, and if we denote the
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mean value of ec by W we must then have 2 . S- . ^'2
is greater

than Z.S.yg.W. Hence under all circumstances, except when
^e c, the mean power is less than the product & . *$. This

condition evidently reduces to - = ^ or that the ratio of the current
C K>

and pressure is at every instant constant, that is the curves have
the same shape.

It was noted on p. 15 that the sole condition that will ensure
that the shape of the current curve is identical with that of the

pressure one is that the circuit should contain an ohmic resistance

and nothing else whatever. For in this case, as we saw, the
current at any instant is exactly equal to the pressure at that
instant divided by the resistance. Under no other circumstance
can a circuit be without a power factor. Hence if in any case it is

necessary to provide a circuit in which the current and pressure
curves are exact copies the one of the other this can only be
secured by taking care that the circuit has ohmic resistance alone
and is quite devoid of induction or capacity.

The replacement ofany arbitrary pressure and the corresponding
current by a pair of equivalent sinusoidal ones in the case just
described can always be effected in the manner considered, but it

will not follow that such a replacement by a system of plane
vectors can always be found. Consider the case where a non-
sinusoidal pressure of the instantaneous value e is acting on a
circuit of constant resistance R and constant self-induction L, the re-

dc
lation giving the current will then be e = cR + L -^ . Now let the

at

dc
instantaneous pressure cR be given by ^ and the pressure L -%- by e2 .

otv

Deduce the virtual value of the current and let the equivalent sine

be represented by OC (Fig. 23), the equivalent sine for el will be given

by OR in phase with OC, and will be determined in value by the
fact that half the product of the maximum of this equivalent sine
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into the maximum of the current given by OC must represent the

total power wasted in the circuit. Now the equivalent sine for

the E.M.F. e2 must evidently be found from the fact that it corre-

sponds to no waste of energy and hence will be given by a vector

RL drawn perpendicular to OR, and of such a length as to repre-
sent the value of the maximum E.M.F. of the sine curve equivalent
to the actual curve of E.M.F. given by e. These vectors will lie

in a plane, the angle ORL being a right angle, and the angle LOO
will be a definite angle, X,, such that its cosine is the power factor.

Now determine in the same way the value of the maximum of the

sine equivalent to the E.M.F. e. It must fulfil the conditions that

it has the same virtual value as the actual curve for e and gives
the same power with the current vector OC as the actual pressure
and current give. Let the value be OP and the phase angle X.

It does not follow that the length OP will be equal to the line OL
or that the angles X and Xa are the same, in fact this will never be

exactly the case. If a perpendicular be drawn at L to the plane
ORL it will be found that OP will lie on this perpendicular so

that the projection of OP on that original plane is OL. Hence
the lines OP and OG correspond to the maximum of the equivalent
sines of pressure and current given in Fig. 22. The lines OP, PR
and OR evidently lie in a plane and PR is perpendicular to OR and

may hence be taken in that plane to represent the inductive effect.

It will thus be seen that the true representation of all the

quantities in the case where the pressures or currents are non-

sinusoidal is of necessity one which cannot be reproduced fully in

a plane figure, but must be referred to three dimensions.

In some cases, such as those concerned with the reactive effects

of the armature of a dynamo, the value of the quantity corre-

sponding to the self-induction L is not constant, and it will follow

that in such cases, even if the E.M.F. impressed on the circuit

is a sine one, the current will not be so, and similar considerations

will again be brought into play. In most practical cases, however,
the sets of vectors are sufficiently nearly in a plane to prevent any
serious error being made by neglecting the difference between the

angles X and Xj.

Theorem on mean values. The following relation is of

importance for some considerations and refers to any two periodic

quantities whatever the form. Let one of these have the in-

stantaneous value a and the other the instantaneous value 6.

We must have the relation

d , db , da

df
ab = a

-di
+ b

'Tf
Hence if the two sides be integrated over a period it follows that

1 [T db , 1 [
r

, da 1 [
T d ,

,,
1 f

r
,- a.-rrdt+-\ b.-j- = -l -j-.ab.dt

= - d(ab\
TJo dt TJo dt rJodt rJo

L. 3



34 ALTERNATING CURRENTS

but the right-hand side is of necessity zero since the values of a
and b (and hence that of the product ab) are from the nature of

those quantities the same at the time zero and at the time T,

we therefore have

1
[
T db If* da-
a.-j-.dt = b.-rr-

rJo dt rJo dt

It follows that for a single periodic quantity, x, we must always
have

'

dt

MEASUREMENT OF ALTERNATE CURRENT POWER.

The wattmeter. When considering the dynamometer we
saw that, from the construction of the instrument, the angle of

torsion of the spring was related to the product of the currents by
the equation mean (c^) = k . a, where d and c2 are the instanta-

neous currents in the two coils. Let such an instrument be

connected as shown in Fig. 24, where X is the load in which the

O

Fig. 24.

power is to be measured and R is a high non-inductive resistance

in series with one of the coils (usually the movable one) which is

placed as a shunt on the load, the other coil being in series with

it. Let e denote the pressure at the terminals of the load, cm
the current in the main, c8 that in the shunt. From the law of

the instrument we have mean (cmcs + cs
2

)
= ka since the current

in the shunt coil is cg while that in the series coil is cm + cs .

It follows that on multiplying each side by R we have

mean (cm csR + cs*R) = kRa.

Now mean (cs
2

R) is the loss of power in the shunt circuit
; further,

since the shunt circuit has been arranged so as to be non-inductive,
at every instant we have e = csR. Thus if W is the power given
to the load and W8 that given to the shunt we have
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But if the resistance of the shunt be high we can arrange
matters so that the loss in it is small compared to the power that
has to be measured. In any case a correction could be applied to
an observed reading if the pressure employed and the resistance
of the shunt be known. The error due to the shunt current

flowing round the series coil can be annulled as follows. Let an
additional coil be wound over the series coil possessing exactly the
same number of turns as that coil but placed in series with the
shunt circuit, and with the shunt current passing round it the

opposite way to the main current in the series coil. It is evident
that the ^magnetic effect of such a coil will just annul that

produced by the shunt current passing in the series coil and
thus the instrument will read the power correctly. Such a coil

is called a compensator.
Another method of connection is as shown in Fig. 25. In this

case we evidently have mean (cm c8 . R) = k. R.a. But if the

Fig. 25.

resistance of the series coil be S, we see that e + cmS = csR.
Hence mean (cme + cm2

$) k.R.oL. Or if W be the power given
to the circuit and Wm that lost in the series coil, we have

W+ Wrn
= k.R.oL.

Thus with a direct connection to the circuit we will measure too

large a power by the loss in either of the coils of the instrument
;

which method is the better will depend on the nature of the
circuit. If we leave out this small error we can write W=k.R.a,
or if the resistance of the shunt be constant under all conditions,
W=K . a.. Such an instrument is known as a Wattmeter. From
the way in which we have deduced its law it is evident that the

calibration and constant K are the same both for direct and for

alternating power even when the latter is of any wave form. For
the purpose of determining the constant it is not necessary to

actually waste the power corresponding to any required reading,
the main current can be supplied from one source and measured

by an ammeter while the pressure is applied to the shunt circuit

from another and measured by a voltmeter.

Wattmeter error. Throughout the above we have assumed
that the current in the shunt circuit is an exact copy of the

32
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pressure at its terminals, and it is only under such circumstances

that the wattmeter will measure the true value of the mean

power. If the pressure and current be sine quantities we can

investigate the effect of the presence of a phase difference between

the current in the shunt and the pressure at its terminals as

follows. Let OA, Fig. 26, be a vector representing the pressure at

Fig. 26.

the terminals of the load. Let OAB be the impedance triangle for

the shunt circuit in which a small self-induction is supposed to be

present, and let OAG be the same triangle for the load which is

also taken as inductive. Let R be the resistance of the shunt and
r that of the load. Then the maximum currents in the two

circuits will be -^ and - -
respectively. Hence the mean couple

./L /

that the instrument measures will be evidently proportional to

- .~OC.~OB . cos (\ - <f>).rR

But we wish to measure the mean power, that is, the mean

product of the currents -=r- and
^

. Hence the true reading of

the wattmeter should be proportional to

-Vo5.oa.cosx.rH
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Hence in this case we must multiply the observed reading of the

wattmeter by the factor

Qq.aa. cos x

in order to get what its reading would have been if the shunt had

been non-inductive. But we see that OB = OA . cos <. Hence
the correction factor becomes

cos X cos X
or

cos
</>

. cos (X (/>)
cos-

<f>
. cos X + sin

<f>
. cos

<f>
. cos X

sec2 6 1 + tan2
<f>

or ^ r r or
1 + tan

<f>
tan X 1 + tan

</>
. tan X

*

This can be written in terms of the resistances and self-inductions

as follows,

where Z1 ,
Rl refer to the shunt circuit and L and R to the load.

It will be seen that the only way to make the correction

independent of the periodicity and of the nature of the load is to

cause jLj to be zero. This is the case we have already taken and
hence we see that it is necessary to have the shunt circuit possessed

only of ohmic resistance. This is a condition which cannot be

carried out with absolute accuracy. The ordinary double wound
coil as a matter of fact usually has a considerable capacity effect

owing to the method of winding being such that the ends have a

high pressure between them. A close approximation to the

desired result can be attained by winding the shunt resistances on

thin but stiff sheets of wood or millboard and making them of

wire of very high specific resistance. Another method is to use a

sort of ribbon for the shunt resistance in which the web is an

insulating thread while the woof is a fine high resistance wire.

Another point that must be borne in mind is that we have

assumed that no magnetic fields other than those produced by the

shunt and series coils are present. Such other fields would be

produced if any coils carrying the current were near the instru-

ment, and also by the presence of fields due to the induction of

alternating currents in any metal near the instrument by the

currents circulating in the coils of the instrument itself. It follows

that all metallic parts (other than the coils themselves and the

suspensions) should, in cases where considerable accuracy is re-

quired, be carefully avoided.

The wattmeter we have so far considered requires that the

coil should be brought back to its zero position at each reading.
In fact it is a zero reading instrument. In very many cases this

is not convenient. If the fine wire coil be suspended about an



38 ALTERNATING CURRENTS

axis and provided with proper controlling couple it is evident that

the angle through which the coil deflects could be taken as

measuring the power. As a rule such a wattmeter is not quite so

accurate as the zero reading one, but the convenience of direct

reading more than compensates for this in practical cases. A
wattmeter depending on electromagnetic action which is unaffected

by external fields, and which has the advantage of producing much
larger deflecting forces than the type we are considering, will be
referred to on p. 81.

Three voltmeter and ammeter methods. In the absence
of a wattmeter the following methods of measuring alternate

current power are available. Let the circuit in which the power
is to be measured be placed in series with a known non-inductive
resistance and let three voltmeters be placed across the whole and
each part of the circuit formed, as shown in Fig. 27 at V1} F2 ,

F3 .

Fig. 27.

Let R be the value of the non-inductive resistance, and let el be
the pressure at any moment between the ends of the inductive

circuit, e2 that on the non-inductive, and es across the whole.
Then at any instant we evidently have e l + e2 eS) and hence

#102 = iW e\ 02
2
)- But the instantaneous power is given by

the product of the pressure el into the current, that is by

w = j ^T.and thus w
2R ? - e^ - e*).

$2 ,
and 3 denote the readings of the three voltmeters, that

is the root of the mean square pressures, and if W denote the mean
power that is being delivered to the circuit, it will be readily seen
that

W =
^R^ ~ ^ ~^

In many cases it is difficult to obtain a known non-inductive
resistance for R. Instead of this we can use some ordinary incan-

descent lamps but in this case the value of R will be unknown ;

in order to find that value an ammeter can be placed in series
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with them, and from the reading of this and the voltmeter we can
find the value of R.

It can readily be seen that the value of W is most accurately
determined when Si and z are equal, and hence in such a case

this method necessitates the use of a pressure considerably in

excess of that required for the operation of the apparatus under
test

;
in many cases this is difficult to procure. The following

form of the experiment, in which the non-inductive resistance and
the circuit under test are put in parallel (see Fig. 28) and the

Fig. 28.

currents taken by the two combined and each separately are

measured, only necessitates the flow of a larger current, and

permits the use of the normal pressure for the test.

Let the virtual currents as shown by the ammeters A l} A 2 ,
and

A 3 be respectively ^, 2̂ ,
and 3̂ ,

then it will readily be seen that
7}

the mean power is given by W = - ( 3̂
2 - <@* - < 2̂

2
),

where R is

as before the value of the non-inductive resistance. If this consists

of incandescent lamps the value of R can be found by placing
a voltmeter, preferable a hot wire one, across the non-inductive

resistance, and neglecting the small drop in the ammeter A 2 .

Modified 3 voltmeter method. The following modification

of the three voltmeter method enables the measurement of small

phase angle to be made. Let it be desired to measure the phase
angle between the current and pressure in the coil EC (Fig. 29).

Connect in series with it a non-inductive resistance AB and in

parallel with both a resistance RR along which a sliding contact

can move. The vector figure of the pressures will then be as

given below, being such that AB is the pressure on the series

resistance, BC that on the terminal of the coil, and the third AC
that between the terminals of R. Let Q be any point on this

resistance, then the pressure between B and Q will be given by
the line BQ. Of all possible points on R there will be one,

namely P, which is such that BP is perpendicular to AC and
the position of that point will be shown by a voltmeter joining
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B to the sliding contact on R giving a minimum reading. Let m
be that minimum reading, the pressure on the coil, ^ that on

Fig. 29.

the resistance AB, then if the angles be as shown, X being the

desired phase angle, we evidently have

Hence the phase angle can readily be found.

This method has the advantage that it is not necessary to have

any large drop along the series resistance, and hence the ordinary

supply pressures are in general sufficient. In such a case when
the drop m is but a small fraction of the pressure it is evident

that /3 is very small compared with the other angles, and hence

the two observations of m and ^ will give X with fair accuracy.

This method depends on the possibility of providing suitable

low reading alternate current voltmeters, and in cases where m
is very small indeed, instruments of the proper type are not in

general available. The method of procedure in this case will

be found on p. 221.

Electrometer methods. The properties of the quadrant
electrometer can be used to give a method of measuring power,
and with proper precautions this method is a very good one to

employ, the difficulty encountered in getting the shunt circuit

of a wattmeter entirely devoid of lag or lead is avoided, and thus

measurements with very low power factors can be readily carried

out. Let- Fig. 30 represent a quadrant electrometer in which the

pressures between the needle and the two pairs of quadrants are
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as shown, being Vl between one pair and the needle and V9

between the other pair and the needle. If the instrument be

properly designed, both as regards the form of the quadrants and

that of the needle, and also as regards the control, we can show

that the relation between these pressures and the angle a, through
which the needle turns, is given by

(y?-Vf) = k*.

The needle N forms a condenser of variable capacity with

each of the cross connected pairs of quadrants. If the instrument

be made in a perfectly symmetrical manner it is evident that

when the needle moves through the angle a from its position
of rest, the portions of its area that emerge from within one pair

of quadrants and enter into the other pair are exactly equal and

Fig. 30.

that each portion is proportional to that angle of twist. Hence
the capacity of the condenser formed by the needle and one pair
of quadrants will increase by a definite amount, while that formed

by the other pair will decrease by the same amount, and further

this amount can be written as /.a where /is a constant, being in

fact the capacity per radian of the condenser formed by either

part of quadrants and the needle. Hence if pressures Fx and F2

be applied as shown, from what was said on p. 8 the change of

energy due to the resulting angular twist a, will be

If the suspension be such as to give a controlling couple

proportional to the angle of twist, as is the case for a torsional
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suspension, and nearly so for a very long bifilar, the work done

due to twisting the suspension will evidently be given by
-

2^

where a is a constant. Thus on equating these amounts of energy
change and work done, we get

It will be found that most electrometers do not fulfil this

relation with sufficient accuracy to enable it to be assumed as
a basis for developing a method of power measurement. This

point may be tested by connecting the needle to one pair of

quadrants, thus reducing one of the potential differences to zero,
and putting known pressures across the needle and the free pair.
Since the expression then becomes Fi

2 = ka it should be found
that the deflection is rigidly proportional to the square of this

pressure over the whole desired range of the instrument. If this.

is not the case, the instrument is not suited for the purpose
we are going to consider. The principal difficulty arises from
want of symmetry which not only prevents the capacity altering

exactly proportional to the angle, but also introduces forces of
attraction between the needle and the quadrants, or other parts
of the apparatus, which we have not considered, and which

virtually prevent the controlling force being due solely to the

suspension as we have taken it to be. To enable these outstanding
quantities to be reduced to a minimum it has been found best
not to aim at a very sensitive instrument, as is ordinarily done,
but to have one with a fairly heavy needle so that any slight
want of symmetry will produce a relatively small effect, and also

to make the parts with larger distances apart than is ordinarily

employed. When all precautions are taken it is possible to obtain
an instrument that obeys the desired law within a small fraction

of one per cent.

Let such an electrometer have the value of its constant k
determined as just described, and let it be desired to use it for the

Fig. 31.

purpose of power measurements. Let the load AB, Fig. 31, be put
in series with a known resistance BC of value R, which for alternate
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currents must be quite non-inductive. Consider first that direct

currents are being used, and join up as shown with the quadrants
connected to the ends of the standard resistance and the needle to

the other end of the load. Let V be the pressure across the load,

and v that across the resistance, then the pressure between the

needle and one pair of quadrants is V while that between the

needle and the other is V + v. Thus if the quadrant electrometer

deflects through the angle a, the connection between the different

quantities will be

(V+vY-V* = k.oL.

This reduces to 2 Vv + v2 = k . a.

But since v is due to the current G flowing through R we have

v = C.R,
and hence we have finally

But VC is the power that is being supplied to the circuit while

%C2
. R is that lost in the little series resistance, and if the latter

is small, the deflection will be nearly proportional to the power.
If the source of power be alternating and the small resistance be

non-inductive, it is evident that the same is true for the mean

power, and hence the electrometer will act as a wattmeter.

The following methods involve the use of a transformer and
will be better understood later on. Take the case where the

supply is at low pressure. Let the current be passed through the

primary of a transformer T, the secondary of which is closed on a

resistance of amount R, and let the connections be made as in

Fig. 32. We must at present assume that the transformer operates

Fig. 32.

in such a way that if c be the current in the main circuit, that in

the secondary will be a . c where a is a constant. Hence sinceR is
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non-inductive the instantaneous pressure at its terminals will be

e = a.R.c. Let the corresponding instantaneous pressure on the

load be e. Then the pressure between one pair of quadrants and

the needle will be e + = while that between the other pair of quad-

rants and the needle will be e -= . The virtual value of the two
2

pressures e and e would be shown by voltmeters at V and v. In

this case the instantaneous couple will be given by

Ce\
2

/ \ 2

e + ~
J (e n)

= k .a. or e .e = k .a.

But owing to the inertia of the needle the mean deflection will

indicate the mean value of the couple, and hence we have the

mean power as given by

W = mean ce = ^ . .

an

In the case where the supply is at very high pressure the

connections shown in Fig. 33 can be used, where the power is

Fig. 33.

transmitted to the load QS by means of a transformer in a manner

yet to be considered. The needle is attached to a point P
on the secondary of this transformer so that the pressure
between and P is only I/nth of that between and T. RI is

a non-inductive resistance of the value Rl} and R2 is a second

whose resistance is Rl
(= 1 As before let e be the in-

stantaneous drop down Rl} then we have e = cRl . Further the

pressure between Q and S being e, that between and S is e + e

while that between and T is e +
n.e

Hence the pressure

between and P is -
-I- ^ while between Q and P it is -=

Thus the instantaneous relation is in this case k.a and thus,
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nk
as in the last one, the mean power is given by W =

-p-
. a. It will

xil

be seen that when n = 2 the resistance R^ can be suppressed.
It is sometimes desired to measure a "

fictitious
"
power, that

is, to supply current and pressure to the parts of an instrument
under test from two sources without wasting the power corre-

sponding to their product. Thus suppose we wish to test a supply
meter under different conditions of load and phase angle. Let the
current be supplied by one dynamo and the pressure by another,
the two being so arranged that the armatures can be given any
desired angular relation, but are rigidly driven as a whole. Let
the electrometer be joined up as shown in Fig. 34 with a non-

NWVWWWS/WWVWWWWM
< V

Meter

Fig. 34.

inductive resistance in series with the current circuit and the

pressure circuit attached at one end to the middle of this

resistance, and at the other to the needle. If R be the value

of this resistance the drop for any current c will be e = cR.

From the method in which the circuit is connected it will be seen

that the pressure between the pairs of quadrants and the needle

are respectively e + -= and e -= where e is the pressure on the

shunt circuit of the meter. It follows that the mean "
power

"
is

proportional to the deflection of the electrometer. In this way
many meters can be tested at once

;
it is only necessary to put all

the shunts in parallel on the one armature and all the series coils

in series with one another on the other. This method is particu-

larly useful when it is desired to find the effect of phase difference

on the action of a meter, and to adjust the constants of a large
number of similar meters at the same time.



CHAPTER IV.

THE CHOKING COIL AND TRANSFORMER.

Choking Coil. Ideal case. A choking coil consists of an
iron core suitably surrounded by a winding in which the alternating
current flows. Let the dimensions of the apparatus (see Fig. 35)

Fig. 35.

be such that the mean length of the iron circuit is I centimetres,
its cross section s square centimetres, and let the relation between
the magnetising force, H, and the resulting induction, B, for the

iron of which it is made be as given in Fig. 36. Let us assume
that a current is passing of such an amount as to produce some
definite maximum value of this induction, which we will call B.

Then from the curve in Fig. 36 we can find the corresponding
value of the magnetising force, let it be H. If the current be

alternating, it will produce an alternating flux, and as a first

approximation let us take the relation between the B and the H
during the cycle as being a constant quantity, namely BjH,
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instead of following a hysteresis cycle as is actually the case,

and further, let the resistance of the winding be considered as

efuvu
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In this case the induction would be in lines per square inch, that

is 6*25 times the corresponding absolute fluxes.

It follows that with the above assumption, if we have a current

flowing which is given by c C smpt it will be accompanied by
a core flux given by (/>

= O sin pt. Since this flux is passing round
the iron core it will pass through each of the T turns of the coil

wound thereon, and hence an E.M.F. will be generated in that coil

given by e = T-^, or e = p . 4> . T . cos pt. Hence the maxi-

mum value of the induced E.M.F. will be E=p.<&.T, and the

corresponding virtual value will be

But this is the only pressure existing in the coil since the resistance

is zero, and hence the applied pressure must be exactly equal and

opposite to this. The vector representation will be as in Fig. 37,

& M

Fig. 37.

OF is the maximum flux and OM the corresponding magneto-
motive force while OG is the -current. In the present case these

vectors all point in the same direction. OE is the induced E. M. F.

lagging a quarter period after the flux while V is the impressed
pressure, exactly equal and opposite to the last.

Core loss; angle of hysteretic lead. We will now see

what alteration is produced if we take into consideration the fact

that the true relation between the flux and the current is a cyclic
curve. In Fig. 38 is drawn a cyclic curve of flux and current for

a definite core
;
and in the adjoining figure is drawn a sine curve

of applied pressure. Since the maximum total flux is related to

the maximum induced pressure by the equation E = p . <& . T, and
since we have seen that the flux leads the induced pressure and

lags on the applied pressure in each case by 90, it will be evident
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that the curve of flux is a sine of amplitude ^ times the pressure

one interpreted on the proper scale of flux and lagging 90 on

the pressure curve, and will be as shown in the figure. If the

Flux.

Fig. 38.

cyclic curve is drawn with the same scale of ordinates for the flux

and with the same axis as the sine curve of flux, it is
only necessary

to project from the flux sine-curve to the cyclic curve in order to

determine the current flowing at each value of the flux. We can
then erect at each point along the horizontal axis an ordinate

which will represent to the proper scale the current that is flowing
at that instant. It is shown in the figure. It will be noticed

that the effect of hysteresis is to cause the current wave to be
non-sinusoidal in shape and distorted. Further, it is no longer in

quadrature with the pressure curve, and hence power has to be

supplied from the source of energy, as must be the case from the

existence of hysteresis. We can replace the actual current curve

by its equivalent sine curve in the manner described on p. 29.

This is shown dotted in the figure, and it will be seen that the

flux leads the current by a definite angle ^, which is called the

Angle of Hysteretic Lead. Further, its complement is a definite

angle of lag, X, less than 90, between the pressure and the current;
it follows that the current has a power component of the amount

^ =^cos X, and a wattless component of the amount ^ =^cos X.

The amount of the former can be found for a given iron core in

the following manner. Let the relation between the maximum
induction B, and the loss per cubic centimetre per cycle in ergs, h,

be given, as shown in the curve in Fig. 39 which refers to the

same iron as that for which the B H curve was given in Fig. 36.

Then if n be the periods per second and v the volume of the

core in cubic centimetres, the loss will be W = h . n . v . 10~7
.
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Let the pressure at which the choking coil is to be supplied be
&, then the in-phase current necessary for this core loss will

evidently be Wj. In the case figured the total current has a
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The angle of hysteretic lead. It can readily be seen that

the angle of hysteretic lead is fixed for a circuit when the quality
of the iron and the induction is fixed, and is independent of all

other factors. The power consumed by the choking coil will be

^E . C cosX or in this case E . C sim. But the loss of energy
was seen to be h.n.v at the given periodicity. Further, we
have

E=p.3>.T=27r.n.B.s.T

and HI = 4?r . C . T or C

Hence E . C

But this leads to

2TT.n.B.s. T.H.I
8-jr.T

47TJT

= $(n.B.H.v).

(n . B . H . v) sin
-\|r
= h . n . v or sin

>|r
= 4fe

B. H'
and hence

*jr
is completely determined when the maximum induction

is given, since that gives definitely the values of h and H. The
usual limits for ^r are between 45 and 30. As an example
consider a choking coil working at 5000 lines per square cm., on
reference to the curves it will be seen that the corresponding value

ofH is 2*87 and of h is about 1800. Hence we have

4 x 1800
Sm* =

2^5000
= '

5 '

which gives ifr
= 30 nearly.

Effect of air gap. In the last example we considered the

case of a choking coil with the magnetic circuit closed, that is to

Current

Cunnent

P.D

Fig. 40.

say without a gap in it. If there be an air gap in the circuit the

hysteresis cycle will be sheared over, and if we assume that the

42
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maximum induction is the same as in the last case, its form will

be as shown in Fig. 40
;
on completing the construction as before

we again arrive at the current curve. Owing to the magneto-
motive force required for the gap it is evident that the current will

be larger and will approximate much more closely to a sine curve ;

and further it will be seen that the hysteretic angle of lead is

much reduced and the current and flux are brought much more
into phase, that is, the current lags more nearly 90 on the pressure.
Hence if it is required to minimize the angle between the flux

and the current it is desirable to put an air gap in the magnetic
circuit. The effect of an air gap in the circuit on the angle of

hysteretic lead can be found as follows. Let there be an air gap
of the amount g in the magnetic circuit, then the equation giving
the current becomes

(HI + Bg} =- 47rC . T,

while the other equations remain the same as before. Hence the

value of sin
-v/r

is given by
4>h.v.n.T

n7~s7f (Bg + HI)
'

which reduces to sin ^!r =

showing that when the form of the circuit and the induction are

given the absolute size of the circuit and the other factors have no-

influence on the angle. Suppose that the circuit considered in the

last case has an air gap which is one per cent, of the total length >

we then have
4 x 1800 n MAm* 4680 (2-87 + 60r

which corresponds to a value of ^r equal to 1 24', showing the

very great increase in X consequent on the presence of a small air

gap; this air gap however necessitates a much larger current as

is evident from the figure.

Vector Figure. The vector representation of the choking
coil taking into account the presence of hysteresis is given in Fig. 41.

The pressure vectors OE and its negative OEl are still at right

angles to the flux vector, but the vectors representing the current

and magnetomotive force lead the flux by the angle of hysteretic
lead. The loss of pressure due to resistance can be shown as

follows. If R be the ohmic resistance of the coil, the maximum
drop of pressure will be given by the product CR. This pressure
is evidently in phase with OG which represent the current, and
hence if the vector OD be cut off from OC of such a length as to

represent the drop on the scale selected for the pressures, the

impressed pressure will have to supply this as well as equilibrate
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\
hence it will be given by the diagonal OF of the parallelogram.

Thus the current and pressure are brought more into phase which

Fig. 41.

must be the case since more power has to be accounted for owing
to the loss of energy in the resistance of the coil.

Eddy current loss. In deriving the current from the cyclic
curve the hysteresis loss was alone considered. In addition to

this there is necessarily a loss due to the production of eddy
currents in the iron core. The following experiment will show
that such currents must to some extent be taken into account.

>' 1'4
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energy was measured by means of a wattmeter in each case and
from the results the loss of energy per cycle in joules was found

as a function of the periodicity, the result being shown in Fig. 42.

If the loss were only due to hysteresis it would be a constant, but

it will be seen that it increases in proportion to the periodicity,

showing that the increase is due to eddy currents induced in the

iron. The increase in the loss due to eddies at a periodicity of

100 will be seen to be about 30/ . This is very far in excess

of what occurs in practice since the induction used in the experi-
ment was very much higher than is usually used, and the loss in

eddies is proportional to the square of the induction; it will be
noted that the intercept on the vertical axis gives the constant

hysteretic loss.

Examples. As examples consider the following cases. A
choking coil has an iron core whose section is 10 by 10 centimetres

and the mean axial length is 70 centimetres. It has 113 turns on
it and is to work on a circuit for which the periods are about 83
or for which %7rn is 500. The maximum induction to be used is

5000, and it is required to find the pressure and current taken.

The maximum value of the induced E.M.F. being given by
E = p<&T, in this case we have

500 x 5000 x 100 x 113
E = - = 282 volts.

Hence if the resistance of the coil be fairly small, the corresponding
virtual terminal pressure will be nearly 200 volts. Since the
maximum induction is 5000 a reference to the curve on p. 47 will

show that the corresponding // is nearly 2 '9, hence the magneto-
motive force is 2'9 x 70 or 203. To find the maximum value of

the magnetising current in amperes we then have

203,
J.V7

which gives C = T43.

Hence its virtual value is I'O ampere. The current will be

completely known when we find its hysteretic component. At
B = 5000 a reference to the curve on p. 50 will show that the
loss is 1800 ergs per c.c. per cycle, and hence in this case the loss

in watts is

1800 x 83 x 7000

--TOT-
^ 105.

Hence the hysteretic component of the current is 0'52 ampere
and the angle of hysteretic advance is such that its cosine is 0'52

or is about 59.

Suppose that it is required to find the size of a choking coil

that is to absorb 100 volts and permit 10 amperes to pass at the
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same periods as the last case. We will take the maximum in-

duction as 8000 for which the corresponding H is about 5*5, and a

provisional mean length of 80 cm. Hence to obtain the number
of turns we have

4-7T

|^.
14.^ = 80x5-5,

since the maximum current corresponding to 10 virtual amperes
is about 14. This leads to T = 25. To find the corresponding
section for a maximum pressure of 141 volts we have

141 x 108 = 500 x 8000 x s x 25,

which leads to 5 = 141 or a square section of 11'85 cm. in the side.

The loss of energy per cm. per cycle will from the curve be
found to be 4000, hence the watts absorbed are

4000 x 141 x 80 x 83
z - or nearly 370,

corresponding to a current of 3'7 amperes. The phase angle is

given by cos X = 0'37 or is X = 68. It may be noted that with the

given induction pressure and current, the volume of the iron must
be constant, for we can write

C =^VT and E =P- B ' S ' T-

IO.H.B ,

Hence E . C = - - .Is.
4.7T

But all the quantities on both sides are fixed by the conditions

of the case, hence the volume, and therefore the loss of power,
must be the same for all arrangements of the core. To lessen the

size it would be necessary to increase the induction, but if this be
much further increased the assumption that the maximum current

is the same in the actual curve and its equivalent sine will no

longer hold good, and hence the best arrangement could only be
settled by experiment.

The presence of an air gap will enable the choking coil to

be designed of much smaller dimensions and with smaller losses.

Suppose the iron circuit has a section of 60 sq. cm., and a length
of 60 cm., while the induction is 5000 and the periods are 83, giving

p 2?r7i = 500 nearly. If the pressure and current are to be as

before 100 volts and 10 amperes, to find the turns we still have

108 x 141 = 500 x 5000 x 60 x T,

which lead to T = 94.

Let us suppose that an air gap of g cm. be made in the iron

circuit, its value must be given by
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this leads to

(2-9 x 60) + 50(% =^ x 14-1 x 94 or g = 0'29 cm.

Hence the air gap enables a much smaller coil to be used, and
the loss in watts will now be

1800 x 60 x 60 x 83

T6i-
or a considerable reduction on the value with an all-iron circuit.

The in-phase current being 0*54 ampere the phase angle is given
by cos X = 0*54 or \ = 87 nearly.

Condition of maximum phase angle*. For the sake of

simplicity the diminution of phase angle between current and

pressure which is due to resistance considered on p. 52 has been

neglected in these examples. In the case where very large phase
angles are required, it can readily be shown that the condition for

maximum phase angle is given when the ohmic loss in the choking
coil is equal to the hysteretic loss. Let WL be the latter, at

constant applied pressure it will be, as seen, nearly constant
;
the

ohmic loss will be ffiR, and hence the total loss is WL + ^R.
If Q is the constant applied pressure, we must have the apparent
power as given by Sffi, and hence we have J@ cos X = WL + ffiR.

Thus
WL + ^Rcosx= $y

'

For a definite iron core with an air gap, the value of ffi depends
principally, as we have just seen, on the air gap provided, and
hence to find the best air gap to give minimum value of cos X
this expression must have its differential coefficient with respect
to ^ equated to zero. This leads to

or to WL =
as stated above.

The transformer. Ideal case. If a second circuit be
wound on the core of a choking coil the flux will pass through
this also and hence an K.M.F. will be induced in it. This E.M.F.

can be used to supply a current, and in such a case the apparatus
is called a transformer. The two circuits are then distinguished
as the primary and secondary circuits. We will first consider that
the flux through both coils is the same, this is never in practice
the case but in well designed transformers it is nearly true, and
we shall see that in most cases this condition must be as nearly
fulfilled as possible In view of what has already been established

* Professor B. Hopkinson.
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we can at once proceed to draw the complete vector representation
of this case. Let the turns on the coils be respectively Tj and T2 ;

the reluctance of the core p ;
Rp and R8 the resistances of the coils,

4> any assumed maximum flux in the core. Suitable scales must
be selected for pressures, currents, magnetomotive forces and flux.

Draw any vector OF (Fig. 43) to represent the flux 4>. From

Fig. 43.

the properties of the core we can find the current required and the

angle of hysteretic lead as in the previous case and thus derive the
vector OM in direction and magnitude which will give the magneto-
motive force required for this maximum flux. The two maximum
induced E.M.F.S will be in the direction OE, at 90 to OF and the

lengths of the vectors representing them will be p . <X> . T^ and

p.<b.Tz . These are shown at OEl and OEZ .

Let us assume that the circuit on which the secondary is

working is non-inductive, and that the external resistance is R.
Then the maximum current will be represented by a vector in the
direction of OE2 with the length

= OC2 .

This current will produce a magnetomotive force of the amount
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which will be represented by the vector OM2 in phase with 0(72 .

Hence while the core actually requires the magnetomotive force

OM, the secondary alone produces one of amount OM2 . It follows

that the primary must produce one obtained as shown by
means of the parallelogram OM2MMl} or will be given by
the vector OMlf The corresponding maximum current in the

primary will be given by the equation OM^ = A l
= 4?r. T^ . d.

From this we get the length OCl of the primary current vector,

Fig. 44. Fig. 45.

its phase being the same as OMlt The flow of this current will

produce a drop of pressure the maximum value of which is R.OCl}

the phase being the same as that of the primary current
; this is

shown by the vector OES . Now the applied pressure will have to

supply this drop and also equilibrate the pressure given by the
vector OE1 . The vector OE5 being taken as OEl reversed it will

be seen that from the parallelogram OESVE5 we derive the

vector V giving the maximum primary terminal pressure. The
terminal secondary pressure will be found thus

;
the drop will be
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given by Rs . C2 and will be represented by the vector OE4 in phase
with 0(72 ,

hence the terminal pressure will be the difference

between OE.2 and OE4 or will be OE.

A transformer is generally used for the purpose of supplying

apparatus at some pressure differing from that existing between
the supply mains available, and very often utilizes the high

pressure from such mains to produce a lower one for the apparatus.
In such cases the pressure on the supply mains is usually of

constant virtual value and it is desired to keep the pressure on
the terminals of the secondary as nearly constant as possible.
The ratio between the primary and secondary pressures is called

the Transformation ratio. In the figure we have just derived this

ratio will be that of the lines 0V and OE. If no ohmic drops
existed in either of the circuits the vectors OE3 and OE4 would
be non-existent and the ratio of transformation would then be

that of the lines OEl
and OE2 . But this is evidently the ratio of

the turns in the coils or T^T^ Hence the nearer we can approxi-
mate to zero resistance in the coils the more constant will be the

ratio of transformation. It follows that in an actual transformer

where the ratio of the applied primary pressure to the terminal

secondary pressure is very nearly constant, the vectors OE3 and
OE4 are very small compared with the other pressure vectors and
thus as a first approximation we can take the vectors OEl and 0V
as the same in length. Up to the present we have arbitrarily
assumed the value of OF but we see that we can nearly take it as

being given by the relation OV=p.3>.Tl . This being deter-

mined the rest of the construction follows as described. We also

see that in such a case all the vectors other than those connected

with the flux are closely in co-phase or anti-phase and that the

flux vectors are nearly at 90 to the others.

In Fig. 44 is given a diagram for another current larger than

the last one. The diagram for no load is shown in Fig. 45. It

will be seen that the effect of loading the transformer is to bring
the current and pressure in the primary more and more into phase.

Regulation. The variation of the transformation ratio in

a transformer is a measure of its regulating properties. The fall

in pressure on full load is a small quantity, in general too small

to be satisfactorily measured directly by means of the difference

between the readings of the no load and full load pressures on the

secondary terminals. The following method will enable this point
to be tested. Two transformers of the same type are joined as

shown in Fig. 46 with their primaries in parallel on the supply
mains and their secondaries arranged in series with a low reading
voltmeter V, but in such a direction that the secondary pressures

oppose, one of the secondaries can be loaded by means of a resis-

tance and the current taken measured by the ammeter A. The



60 ALTERNATING CURRENTS

reading of the voltmeter in this case evidently will be the drop
corresponding to the load being carried since the E.M.F. of the

AMJUUU UjLJUJUL

Fig. 46.

unloaded one is a constant, or if the pressure on the mains should

vary slightly it will affect both transformers in the same way.
It should be noted that the test cannot be very accurate since as

will be seen later on the phase of the E.M.F. of the loaded one and
that of the E.M.F. of the other are not the same, and hence the

reading of the voltmeter will give the vector difference of the

pressures and not the actual difference between the no load

pressure and the loaded one.

Case of a phase angle in secondary ; lagging current.
We will now take the case where the circuit of the secondary
is inductive. The flux vector OF in Fig. 47 is taken of the same

length as before and the induced E.M.F. and resultant magneto-
motive force vectors are drawn as in the last case. On the
vector of the secondary E.M.F., OE^, a semicircle is drawn and
the angle E2OC2 taken equal to the angle whose tangent is the
reactance of the secondary divided by its total resistance. Then
OE6 will be the effective E.M.F. in the secondary or that required for

the resistances internal and external, whileE2E6 is the back E.M.F. or

that required for the self-induction of the same. Thus the current
in the secondary will be represented by a vector in the direction

/\
TJ1~

of OES with the length
*

. The corresponding magnetomo--Ks -f- jft

tive force will be given by OM^ which is as before 47r.C 2 .l
7

2 .

The primary magnetomotive force is obtained by drawing the

parallelogram OM^MM^ since it must be such as to give with OM2

the resultant OM. In the same way as in the previous case we
derive the primary current OCl and from it the drop in pressure due
to the resistance of the primary, OES ,

and by combining this with
the reversed induced primary E.M.F., OE5 ,

we get the primary
impressed pressure V. The secondary terminal pressure will be



THE CHOKING COIL AND TRANSFORMER 61

found as follows. Cut off the vector OE4 from the secondary
effective pressure, it being equal to CZR8 and join E2E4 . Then
E2E4 is the secondary pressure. Its proper angular position will

M,

Fig. 47. Fig. 48.

be got by drawing OE equal and parallel to E2E4 ,
so that the

secondary angle of lag for the load is E4OC2 . It will be seen that
the angle of lag in the secondary is as it were transferred to the

primary, and further that for the same secondary power the

regulation is worse, or the ratio of OE to V is less than in the
non-inductive case.

Leading current. If the secondary load be such that the
current leads the pressure we can easily draw the vector diagram
in the same way. This is shown in Fig. 48. It is not necessary
to follow the construction in detail, since the construction is the
same as in the last case.

Leakage. Up to the present we have assumed that the flux

of magnetism is the same through both the primary and secondary
coils. This can never be the case since the two coils would then
have to occupy identically the same position. As an extreme

example consider the arrangement shown in Figs. 49 and 50. The

magnetomotive force produced by the primary coil will tend to send
a large flux through the iron core and in addition another flux

through the various paths provided by the surrounding air which
is called the leakage field or leakage flux. Hence at no load on
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the secondary the flux will be as shown in Fig. 49, where the

major part of the flux passes down the iron but a small part will

Fig. 49. Fig. 50.

flow outside it, the maximum of the core flux will always be less

than the maximum of the flux that passes through the primary
coil and the ratio of the two is determined solely by the relative

reluctances of the core and the air leakage paths. When a current

Fig. 51.
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is flowing in the secondary the magnetomotive force due to it will

almost directly oppose the primary magnetomotive force and

hence tend to drive the flux backwards
;
that is, the core flux will

no longer all pass through the secondary but some of it will be

forced out into additional leakage paths as shown in Fig. 50

In an actual transformer, such as is shown in Fig. 51, the

two coils are not wound on distinct parts of the core but, to avoid

this leakage effect, are closely interleaved or otherwise arranged
so that the opposing magnetic effects of the two currents may as

nearly as possible act together at all points of the core. But
however small the subdivision may be made, the presence of this

leakage of flux cannot be avoided. Consider the case indicated in

Fig. 52 where the coils are supposed to be interleaved, and a few

Fig. 52.

successive portions are shown. When the current in the primary
sections, P, is a positive maximum as shown by the dots and
crosses on the sections, a dot expressing that the current is flowing

upwards in the wires, a cross that it is flowing downwards, the

secondary currents will be practically at their negative maximum,
and the dots and crosses for them will be as shown. Each of these

sets of small coils will evidently produce small whirls of magnetism
round themselves as shown, and these whirls will pass almost

entirely through the air space near the coils. It follows that the

reluctance of the path through which each little whirl of flux

passes will be of practically constant amount and that the amount
of flux in each whirl will be proportional to the current in the

section that is producing it. The leakage fluxes from all these

separate small whirls in either coil will superpose themselves on

any main flux that may be existent owing to the combined effect

of all the coils in a similar way to the case first considered. That
is to say, the useful flux that gets into the secondary will be
diminished by the presence of these little fluxes, while the flux

that gets cut by the primary will be increased by its own leakage.
It is evident, however, from the figure that the average value of

the core flux is not affected, each little whirl of leakage flux in

successive sections of the coils will flow in opposite directions as
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shown, and thus we can take the core flux as being practically
constant along its length. Hence the calculation of the current

required by the core for a definite flux, and the evaluation of the

angle of hysteretic lead remain the same as before. Let us denote

by 3> this core flux, by <J>2 the corresponding nett secondary flux

after the leakage flux has been taken away, and by <E>! the value

of the primary flux after its leakages have been added.

The ratio of the maximum values of the three fluxes will now

depend not only on the reluctances of the core and the two leakage

paths but also on the phase relations ofthe magnetomotive forces and
their magnitudes. Let such a leaky transformer be working with

its secondary on a non-inductive load, and let Of in Fig. 53 denote

Fig. 53.

the flux that is passing through the secondary. The E.M.F. induced
in that coil will be given by the vector OE2 lagging 90 after Of
and of the magnitude OE2 equal to pT2 <&2 . If the external resist-

ance of the secondary circuit be R ohms, its total resistance is

Rg +R and hence the current will be OE2 divided by this, let it be

given by OCZ . This current will produce a magnetomotive force,
OM2 ,

in the direction of the vector OC2 and of the amount

A z
=

. T2 . OG2 ,

which acting on the reluctance of the secondary leakage paths will

give a leakage flux of the amount <>
S2 and denoted by 0-*jr2 ,

in phase
with the secondary current and of amount proportional to the

secondary current. Then since the core flux must be such as to

give Of as the resultant flux in the secondary when it is combined
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with the secondary leakage flux ^>K ,
it will be given in maximum

value and phase by the vector 0$. The reluctance of the core

and its angle of hysteretic advance being known we can draw
the vector OM to represent the resultant magnetomotive force,

the angle of hysteretic lead being M0$. Now this magnetomotive
force is the resultant of the two due respectively to the primary
and secondary currents, hence as before the primary magnetomotive
force will be given by the vector OM^ found by drawing the

parallelogram OMJfMi. The primary current will be found in

the way described before and can be represented by the vector OClf

But the primary magnetomotive force also acts on the primary leak-

age paths and will produce a flux through them proportional to OMl

and of amount equal to this M.M.F. divided by the reluctance of

those paths. Let this flux be <X>gl and be given by Ofa in phase
with OMj. and proportional to Cj. By drawing the parallelogram
shown we get the vector OF which will represent the maximum
primary flux 4v The primary induced E.M.F. will be given by the

vector OEl at right angles to OF and of a length given by p.T-^.^.
The pressure lost in resistance in the primary, OES ,

will be in

phase with OC\ and of amount OCi multiplied into the primary
resistance Rp . Hence the primary impressed pressure will be the

resultant of this and OE^ reversed (that is OE5) or will be given

by 0V. The secondary terminal pressure will, as before, be found

by subtracting from OE2 the vector OE4 which is equal to C2

multiplied into the secondary resistance, and hence that pressure
will be given by OE.

It will be noticed that the effect of leakage is to produce
a larger phase difference between the primary pressure and
current than would have existed with no leakage, or in other

words the presence of leakage produces the same effect as if the

secondary of a non-leaky transformer were working on an inductive

load. Another important effect produced is worse regulation ;
for

even if the resistance drops be neglected, the ratio of transforma-
T

tion is no longer given by the ratio of the turns, -^ ,
but by the ratio

-*2

^~-~ . But with a constant impressed pressure the value of 4>j
^2-^2
remains nearly constant while the two leakage fluxes, <&n and 4>2,
will increase proportionally to the currents, hence 4>2 will continually
diminish as the load increases in the secondary, and hence the

regulation will be greatly affected by leakage.

The student should repeat this construction with a lag in the

secondary and also with a lead. In the former case he will find

that the ratio of the two pressures is still more affected showing
that leakage must be avoided when the load is inductive. In the
former he will find that the leading current tends to diminish the
evil effects, which must be the case since capacity will tend to

diminish the self-induction effect of the leakage.

L.



CHAPTER V.

TRANSFORMER EQUATIONS.

Transformer : analytical expression. Leakage equi-
valent to a reactance. If the graphical methods just described

of representing the performance of a transformer be applied to any
practical type, it will be found that they are not suitable for

investigating its properties since the currents concerned in the

magnetic cycle and the losses of pressure in the coils are very
small compared with the other currents and pressures. It is

important, therefore, to find some more appropriate method of

dealing with the question. Since the currents concerned with the

transference of power from one circuit to the other are by far the

Fig. 54.

most important, let us at first neglect the small magnetising
current altogether. Then if OC2 , Fig. 54, be any current in the

secondary it will be accompanied by an exactly antiphased current
OCl in the primary, the values of the two being in the ratio of the
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turns. If OE be the secondary induced E.M.F., the flux corre-

sponding will be given by Of. It will follow that the leakage flux

4>s2 due to the secondary current will be given by (f>f
in phase with

it, and 4>, that due to the primary, by F<f> in phase with its current,

but since the two currents are exactly antiphased, the points /, <f>,

and F are in a line. We can thus consider the vector Ff as giving
us the total leakage flux, <&g ,

of the transformer and the vector OF
will be the total flux cut by the primary wires. This will induce

an E.M.F. therein given by OE^. But we can consider this E.M.F.

as being made up of two components, the one due to the flux Of
the other due to the leakage flux, Ff, these E.M.F.S being as shown
at OEa and OEi. The former will be related to the secondary
E.M.F., OE, merely in the ratio of the turns since both are due to

the flux Of, the latter will be proportional to the current in the

primary of the transformer, and will be in quadrature therewith,
that is perpendicular to Ff. Hence the primary pressure must be

given by the resultant of these two vectors when reversed, or will

be given by the two vectors, OEa and 08. It will again be

readily seen that the E.M.F. due to the leakage field behaves just as

if the primary had a definite reactance. For the possession of

a reactance of the value S would mean that with a current *&

passing an E.M.F. of the value S . ^ was produced in the primary
and that E.M.F. would be in quadrature with the current. But the

leakage field is proportional to the current and hence the E.M.F. due
to it would be also proportional to the current and to the periods
and would be in quadrature with the Current. Hence at constant

periods the effect of the leakage field is exactly the same as that

which would be produced if we imagined the leakage fields of

both primary and secondaiy suppressed but that the primary
possessed a definite reactance. It follows that, as far as these fields

are concerned, we may express their result by saying that the ideal

transformer has a definite reactance, S, at the given periods and

pressure.

Total equivalent primary resistance. We can now see

that in a similar way the effect of the resistance in the secondary
can be transferred to the primary. For let the ratio of the primary
turns to the secondary ones be p, let the actual ohmic resistance

of the primary be Rp and of the secondary Rs . If a current of the

amount ^ be flowing in the primary it will produce a loss of

energy of the amount *^2
. Rp . But the corresponding current in

the secondary will be p times the primary current, and the

loss of energy will be p
z .^z .Rg . Hence if we imagine that an

extra resistance of the amount p
2

. R8 exists in the primary, and
the secondary is devoid of resistance, the result will be the same
as in the actual case, or if the primary be taken to have an

equivalent total resistance of Rp + Rg . p
2 we can consider the

secondary as devoid of resistance. Thus instead of the actual

52
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distribution of leakage fields and resistances we can imagine that
the primary has a definite resistance which will allow for all the
existent ohmic losses being considered as due to the passage of the

primary current through this resistance, and a definite reactance

which will produce an effect exactly the same as the actually existent

leakage fields. Hence we may consider that the primary has an

impedance corresponding to these two quantities, and at fixed

alternations this impedance will be a definite quantity. Thus if

we denote the equivalent resistance by R and the reactance

equivalent to the leakage E.M.F.s by S, the impedance will be

/ = +
and if OC (Fig. 55) represent any value of the primary current it

will always be accompanied by two E.M.F.s, the one, ^R, in phase

with it, the other, Sffl, in quadrature, the resultant being <@I and
inclined to the current vector at an angle a whose tangent is 8/R.

Short-circuit test. The value of this apparent impedance of

a transformer can be found as follows. Short-circuit the secondary
by means of a thick wire and apply an alternating pressure of the

proper periodicity to the primary, observing the primary current

and pressure, and the power taken by the same. Let these be

respectively ^, S8t and W8 ,
then W8 @s cos X where A is the

angle between the pressure and the current. But from the circum-

stances that the secondary is short-circuited, all the losses that

occur are those incident to the circulation of the current against
the resistances of the two coils together with a loss in the core.

But the latter is extremely small since the pressure necessary to

circulate even full load primary current will necessitate a mere
fraction of the full load pressure, and hence the cycle of flux in

the core will be of such a small magnitude that the corresponding
core losses will be negligible. Thus the sole loss of energy is, as



TRANSFORMER EQUATIONS 69

said, that due to resistances in the coils. The leakage field

produced, will be of necessity that corresponding to the actually
existent primary current and is, like the resistance losses, dependent

solely on that current
;
hence the resistance and reactance of the

transformer are the same in this test as they would be when used

in the ordinary manner when the same current is flowing. For all

ordinary ranges of currents it will be found that cos A, remains

constant.

Now we must have ^R Ws ,
where R is the required

&

equivalent resistance, and -^
= /, where I is the impedance, from

W 8

which the reactance can be calculated from the expression

I* = S* + R\

In a particular transformer of somewhat old type it was found

that to circulate a current of 0'8 ampere in the primary when the

secondary was short circuited a pressure of 86 volts was required,
and the power taken was 32'7 watts. From this we readily derive

that the equivalent resistance is 51 ohms, the impedance is 107

and the reactance is 94. Hence whenever a current ^ is flowing
into the transformer's primary it will necessitate the primary

supplying a pressure of 51 . ^ volts in phase with the current for

the resistance, and also a pressure of 94.^ volts leading the current

by a right angle. These pressures are supplied by the source of

potential difference, and what is left will be available for other

purposes as for example to supply pressure to the secondary
circuit, the secondary coil being now considered as devoid of both

resistance and leakage.

Expression for the secondary pressure. The whole treat-

ment of the problem, neglecting the magnetising current, can now
be referred to the primary side, and since with sinusoidal quantities
the maximum is always \/2 of the virtual value, the latter can be

taken instead of the former in drawing up a diagram. Let OC2

(Fig. 56) be the direction of the secondary current
;
its phase angle,

X, relative to the secondary potential difference being MOC2 .

The corresponding current in the primary will be less than this in

proportion to the ratio of the turns but in exact antiphase, let it

be given by OC^. Produce the line OM upwards to Y and draw
the perpendicular OX. Then the nett pressure in the primary
that is requisite to produce the actual terminal pressure in the

secondary will be on OF as shown at OE. The actual secondary

pressure will be l/pih of this. The current will be accompanied
by the two E.M.F.S OR and OS as before, the resultant of these

"being OL. To find the position of the primary terminal pressure
vector a circle should be drawn with its value as radius, and the

line LV drawn from L parallel to OF. The vector OF will then

represent the primary pressure in magnitude and phase. Hence
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the line VE being drawn parallel to OL will give the value of the

part of the primary pressure that is available for direct transforma-

tion to the terminals of the secondary, in other words p times that

terminal pressure.

From these considerations we can readily deduce an important
relation between the primary pressure and the constants of the

transformer. Take the projections of each E.M.F. on the two lines

OX and OF. If ^ be the primary current required to equilibrate
the secondary one, the latter will be p^; the angle between this

and the line OF is the lag in the secondary circuit or X; let R
and S be the resistance and reactance of the equivalent primary,
and let <^ be the unknown value of the secondary terminal pressure,
so that pS is the equivalent pressure in the primary : further let

SQ be the value of the constant primary terminal pressure. Then
the two sets of horizontal (X) and vertical (F) projections will

have the following values :

X = ^ (R sin X - S cos X), F= pS + ^ (R . cos X + 8 . sin X),

also + F
The above expression can also be proved as follows. Let OC

(Fig. 57) be the direction of the current both primary and

secondary, X the angle of lag between the secondary terminal

pressure and its current, and therefore between the primary
current and the primary pressure pg, equivalent to the secondary
one, that is the line OE. Let ER be the value of the ohmic drop,
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<$.R, in the primary as found from the short-circuit experiment,
and RV the corresponding value of the reactance E.M.F. <$. S. Then
the primary applied pressure will be the resultant of these as

shown at OF. Draw the perpendicular RA from R on OE

B

Fig. 57.

produced and the perpendicular VBD to the same from F, the

point B being where this line meets OE produced, and the point
D where it meets a line drawn from R parallel to OE. Then the

angles AER and RVD are each equal to X, and since ER is equal
to ^ . R and VR to <@ . S, we have

/Sf.^.cosX,

'. sin X)
2 + (S . <@. cos \ - ^ . R . sin X)

2
,

and

Hence

while

But since

we get
* = (p+<@.

the same result as before.

Open-circuit test. Up to the present nothing has been said

relative to the current required to produce the cycle of flux in the

core, including the provision of the necessary loss of energy
incident to hysteresis, etc. The magnitude of this cycle, and

hence that of the corresponding current, will depend on the

pressure induced in the primary, and on the periods ;
the latter

will be constant for a given state of supply, but the former will

not be constant. Owing to resistance, the induced pressure in the

primary must always be less than the potential difference, but the

condition of operation is such that the latter is kept constant,

hence the cycle of flux will have less amplitude the greater the

current. In all practical cases the fall of pressure is a small

percentage of the potential difference, and we can very nearly
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consider the cycle of flux, and consequently the current taken

by the transformer for the production of that flux, as being
constant at all loads. Hence if we can determine it for one state

of operation that will be sufficient. It is readily found for the

case where the secondary circuit is open, and the determination of

the corresponding pressure, current and power in such a case is

termed the open circuit or no load test of the transformer. In such

a test it will readily be seen that the current flowing is very small

compared with the full load current, and it flows only against the

primary resistance, hence the ohmic loss is in this case entirely

negligible, and all the measured loss can be considered as that

incident to the core flux. Hence in any transformer let the

secondary circuit be open and measure the pressure ,
current

^o, and power W taken by the transformer, the former being the

normal pressure at which it is required to operate. It follows that

the component of the current that is in phase with the pressure,W
or the power component ffip,

is given by -j? ,
and hence the

wattless or quadrature component will be

It may be noticed that the angle of phase difference between the
60

current and pressure, that is the angle whose cosine is ^~ ,
is the

Wq
complement of the angle of hysteretic lead. In the transformer

considered before, it was found that under a pressure of 2000 volts

a current of 0*072 ampere flowed, and the power taken was
109 watts. It readily follows that the power component of

the current is 0'054 ampere while the wattless current is

0'048 ampere, from which the angle of lag readily follows,

being given by
0'48

or 0'8, nearly.

Should it be difficult to apply the proper primary pressure the

observations can be taken on the secondary circuit with the

appropriate pressure. The cycle to which the iron is subjected
and the power used will be the same, but the observed current

and pressure must be reduced to their equivalent values for the

primary circuit. In either case the core loss is accompanied by
a certain ohmic loss in the coil, but this will of necessity be

negligibly small, since the current taken is a very small fraction

of any reasonable load current.

Expression for total current in primary. The mag-
netising current being small will produce practically no effect

with regard to fall of pressure due to ohmic resistance or in

producing a leakage flux
; further, any effects of such a current will
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"be solely referable to the actual primary resistance and leakage
and not to the equivalent leakage and resistance, and will hence

produce entirely negligible effects. But in order to find the
actual current that is Sowing in the primary, we must combine
with the previously considered power current the current that is

required to maintain the magnetic cycle. But it has just been
shown that the latter OCm (Fig. 58) had two components, the one,

Fig. 58. Fig. 59.

^p, in phase with the pressure, the other, ^q,
in quadrature there-

with. The load current will likewise have two components in

the same directions, namely ^cosX in phase with the pressure

induced, and ^sinX in quadrature. Hence the two components
of the actual primary current will be

and the resultant current will be given by

Example. Take as an example the transformer whose con-

stants we have given and let us assume that a lagging current of

20 amperes is flowing in the secondary, the angle of lag being 30

(Fig. 59). The ratio of transformation was 20 to 1 so that the

corresponding primary current is 1 ampere. This means that the

values of <@.R is 51 volts while that of <@ . 8 is 94 volts. Hence
we can write down X and Y as follows :

Z =
(0-5 x 51)

-
(0-86 x 94) = - 56,

F = p<+(0-86x 51) + (0-5 x 94) = ^+91.
The constant terminal pressure being 2000 volts the following

expression will give the value of :
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This leads nearly to

pg=1903 or = 95.

Hence under such circumstances the terminal pressure on the

secondary will be about 95 volts instead of 100 volts, that would
exist in the case of no resistance or leakage or, very nearly, on

open circuit. By taking a set of currents at this angle of lag, the

curve connecting the current and pressure for a load with a power
factor of cos 30 or 0'86 can be determined.

It will be seen that the presence of the additional E.M.F.s in

the primary will result in the angle between the pressure and

primary current being altered from the angle in the secondary by
the angle VOE in Fig. 56, and that this angle, -fy,

has its tangent

given by X/Y. In most cases X is very nearly equal to the

terminal primary pressure, and hence we can nearly write,

tamjr
= X/&Q. In this case X is 56, and So is 2000, hence tamjr

is nearly 0'028 or ty is about 1 40'. Hence the angle between
the primary pressure and current will be about 31 40'. To find

the total current taken we must refer to p. 72 where it will be

seen that the magnetising current was nearly at 45 to the pressure
and had approximately the two components 0'05. Hence the two

components of the total current are (2 cos X + '05) and (2 sin X-f *05)
or 1'05 and 1*78, and that current itself is

VriO + 3'20 or about 21 amperes.

The load being full load the magnetising current thus has

practically no effect. It is only for considerably smaller loads that

it is necessary to take it into account.

As a further example of the method, consider the case where

Fig. 60.

the load is still 20 amperes on the secondary, but that circuit is

entirely non-inductive, then the vectors are as in Fig. 60. We
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can readily see that X is then p+ 51 while Y is - 94. Thus the

terminal secondary pressure is about 97 volts, while ty is 2 40' or

the primary angle of lag is that amount.

Now take the case where the load is entirely inductive as in

Fig. 61. Here X is + 51 while Y is pg+ 94. Thus the terminal

/>

57

Fig. 61.

pressure is about 95 volts while the angle ^jr
is 1 30'. Since X is

here positive, it means that ty must be subtracted from the lag in

the secondary, or the nett angle of lag in the primary is 88 30'.

Consider lastly the case of a load leading by 45 in the

secondary, Fig. 62. From the figure it is evident that the vertical

Fig. 62.

components of R . <$ and S . <$ are now subtracted, while the

horizontal ones add, hence the value ofX can be seen to be 101

while Y is pS 30. Thus the terminal pressure is 101*5 volts
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while
i/r

is about 3. Hence the primary lead is 42, while the

secondary pressure is raised by the leading current as we saw on

p. 65. It will also be noted that this rise in pressure is

consequent on the reactive effect of the primary overpowering its

resistance one, that is the projection of S .*$ being greater than
that of E . <$.

By thus taking various conditions of loading into consideration

a full study of the action of the transformer can be obtained, based

solely on the open- and short-circuit tests. When we come to

consider the efficiency of a transformer we shall see that the same
two tests suffice to determine this quantity also. They are thus
of fundamental importance in the testing of transformers.

Constants for modern type. The following data, referring
to a good modern transformer, will give some idea of the magnitude
of the quantities we have been considering in such a case. The
transformer was of 30 kilowatt out-put with a primary pressure of

2000 volts at 60 periods and a transformation ratio of 20 to 1.

The mean length of the iron circuit was about 135 centimetres,
the cross section of the iron about 125 square centimetres, and
the volume about 17,000 cubic centimetres. The number of

primary turns was 920. With the full load current of 15 amperes
circulating in the primary the pressure required on short-circuit

was 53'5 volts, the loss being about 500 watts, while the core loss

was found to be about 400 watts at the normal pressure and

periods.

We will first find the induction in the iron. Since the pressure
at the terminals was 2000 volts with sine conditions this cor-

responds to a maximum value of 2830 volts. The periods per
second being 60, the corresponding value of p or 2?m is 120?r or

378. But we know from p. 47 that the maximum flux in the core
will be given by 2830 x 108 = 378 x 920 x <l>, the factor 108

being
used to turn volts into absolute units of pressure, hence the total

core flux is <3> = 8 10 x 105
lines. It follows that since the cross

section is 125 cm., the value of B, the maximum induction per
square cm., is nearly 6500.

For a fair average iron of the quality used in transformers at
this value of B the value of H will be about 4, hence if ^ is

virtual value of the no load current we have

T being the turns, I the length, this leads to

^ = --*3S x 1Q
Q
- = 0-33 ampere.

TT x 1-414 x 920

Again the loss in hysteresis for the same quality of iron at the
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given induction would be about 3000 ergs per cubic cm. per cycle,
hence the loss in watts due to hysteresis will be about

3000 x 17,000 x 60 x 10~7

or 340 watts.

The difference between this and the observed value will be

partly due to eddies in the core stampings and partly to eddies

elsewhere.

Since the short circuit test gave that the pressure of 53'5 volts

was required to send a current of 15 amperes it follows that the

impedance is 35'8 ohms, and since the energy loss was 500 watts,

the equivalent resistance is ^ or 2'22 ohms. Hence the react-

ance will be (3'58
2 + 2'222

)* or 2*78. The amount of flux that

must leak to produce this, the full load reactance, can be found as

in the primary induced E.M.F. by multiplying by 10s and dividing

by the value of 2?rn and the turns, that is the leaking flux will be

2'78xl08 xl5
378 x 920

.

r 1S 200

The small value both of exciting current as compared with the

full load one. and the small leakage field, show that the design is

very good as far as the magnetic properties are concerned.

With the full load primary current of 15 amperes the equiva-
lent resistance drop is evidently 33'3 volts and the reactance

pressure is 41 '7. By applying the method given on p. 71 it will

be found that, assuming the open-circuit pressure on the secondary
is 100 volts, the pressure with a full non-inductive load will be
98'3 volts. If the same load be taken but with a power factor of

0'6, the current will have to be greater in the ratio of 5 to 3, hence
the two pressures now become 55 '5 and 69'5. On again applying
that method it will be found that the terminal pressure is about
96 volts.



CHAPTER VI.

SPECIAL FOEMS OF TRANSFORMER.

Auto-transformer. In some cases it is not necessary to

have two distinct coils provided on the iron core for the purpose
of transformation. Let a transformer have the ratio p as in

Fig. 63, where p is 3. As we have seen, when a pressure S is

applied to the terminals of the primary coil p, the pressure in the

secondary is SQjp. Let this secondary deliver a current, then

Fig. 63.

very approximately we know that the current in the primary
being <$, that in the secondary will be p^. Instead of providing
a second coil to act as secondary, let wires be brought out from
the winding of the coil on the core at such points that there

is between them the same number of turns as in the previous

secondary, as shown in the lower figure, such an arrangement
is called an auto-transformer or

"
compensator." Since the flux is

common to the two circuits thus formed, the ratio of transforma-

tion will be the same as before, and thus as far as the transference

of power between the two circuits is concerned, the conditions are
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unaltered. The current in the whole winding being ^, that in the

circuit attached to the part will be p^. Since these currents are,

as we have seen, antiphased, the nett current in the common turns

will be (p 1) ^. Let us assume that the current density in the

two coils of the original transformer was the same, then if R
denote the resistance of the primary, that of the secondary will be

R/p, and since the currents are respectively ^ and p%?, the drops
will be the same as far as ohmic resistance is concerned, and the

total energy lost will be R^ 2

(p + 1); as the auto-transformer has

the same current density, the portion of the coil which carries the

primary current only must have the same cross section as before,

but its length will be less by the part carrying the two currents, that

is, will be f -
j
times its former length and hence f -

]
times

its former resistance. Hence if R still denotes the original primary
resistance, the resistance of this part of the auto-transformer will

be (<- -
} R and with the same current ffi as before the energy

loss will be ^ 2R( -
J

. The common part of the winding will

now carry the current (p
- 1)^; in the original case the resistancep

of the secondary was and it carried the current p'ff, hence with

the same current density, the resistance of the common part can
now be

R p R
ori ^

i

p p-l p-l
Thus the energy lost in that part is

(p-1)
2^ 2.^ or

or the total loss will be

- or
P

The ratio of this to the former is

p
2 - 1 p-l

- or
"

-.
PG> + 1) P

We thus see that the ohmic loss in an auto-transformer is less

than that in a transformer with the same current density, and
hence it can be made smaller than the corresponding transformer.

In fact it will readily be seen from the expression just derived,
that with a 2 to 1 ratio the auto-transformer need be only half as

large as the corresponding transformer, while with the ratio of 3
to 1 it will be Jrds of the size. In the above the magnetising
current has been left out of account.
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A convenient form of this apparatus for many purposes is

obtained if various points of the winding are brought out to

form several secondaries with different definite pressures. Thus,
for example, if tappings to the coil are provided at ten equal
intervals along the coil, the pressure between each successive

tapping will be one tenth of the applied pressure, and thus the

whole forms an alternate current potential divider. In such

a case the coil may for convenience, as for example for laboratory

purposes, be wound with the same gauge of wire throughout,
or the gauge may be varied to suit the currents that will be

required for the successive connections to the tappings.

It is evident that such an apparatus is chiefly of use when the

ratio of transformation is small. With large ratios the expression

given shows that little advantage accrues, and further the primary
and secondary coils being perforce connected, there is danger
of a high primary pressure being applied to apparatus connected

to the secondary should any breakdown of insulation occur.

Current transformer. Transformers are sometimes used

in connection with ammeters of small maximum range to enable

large currents to be measured. In the consideration of the trans-

former it will be recollected that under all circumstances, what-
ever be the resistances of the coils, the primary current was
such as to equilibrate the secondary one, and provide a small

part over to allow for the establishment of the flux in the iron

core. If this latter part be small enough to be negligible, then

under all circumstances the two currents will be exactly in the

ratio of the turns of the two coils. The condition, therefore,

that such a transformer must fulfil is simply that the mag-
netising current is reduced to the smallest possible value.

In order that this may be the case, the iron circuit must be so

arranged that the maximum induction in the cycle, and con-

sequently the hysteretic loss, is as small as possible. This can be

secured by having very small pressures produced, and hence the

ammeter should be of as low resistance as possible in order to

require a small pressure at its terminals with the full reading.

Again, the iron core must be designed to have the smallest

possible loss with this applied pressure.

With fair precautions in design it is possible to make current

transformers in which the angle between the two currents differs

from antiphase by less than J of a degree, thus ensuring the

exactness of the ratio of transformation.

Air core transformer. In some cases it is useful to be
able to produce a current that is practically at right angles to

a given current, and this can be secured as follows. Consider
a transformer in which there is no iron core, then as we can readily
see, owing to there being no hysteresis, the flux is accurately
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in phase with this current when the secondary circuit is unloaded.
It follows that the induced pressures, both primary and secondary,
will then be exactly in quadrature with the current flowing. If the

secondary be allowed to carry a current, this is no longer the case,
since the primary magnetomotive force will have to equilibrate
this new one as well as produce the flux between the coils. Let
the two coils however be closely entwined so that the flux is

practically the same for each, and let the secondary be very lightly
loaded, and it will be evident that the magnetomotive force

required for the secondary will be very small, and hence the

E.M.F. in the secondary will be practically in quadrature with the

primary current; hence provided the secondary circuit be non-

inductive, the resulting small current will also be practically in

quadrature with the main one. The transformer in fact is one
with a relatively enormous magnetising current and very small
load one. In both this case, and also in the last, when it is

desired to cut the transformer out of action the primary should
be short-circuited as will be evident from the consideration of

its relation to the circuit.

Application to wattmeter. This property of an air cored
transformer has been used by I)r Sumpner to enable alternate

current wattmeters to be made with iron cores. Consider the
case of Fig. 64. D is a D'Arsonval galvanometer but made

Fig. 64.

with laminated field magnets and as small an air gap as possible.
The winding on it is made of wire of as large a guage as can

conveniently be used for the instrument, so as to keep the ohmic
resistance of the winding as small as possible, and this winding is

put across the mains supplying the power. T is a small air core

transformer of the type we have just considered, having a fairly

L. 6
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large ratio of transformation. The primary of this transformer is

put in one of the mains supplying current to the load, the

secondary being in series with the coil of the D'Arsonval and

a high non-inductive resistance R.

Owing to the pressure applied to the ends of D an alternating
current will flow in its winding which will generate an alternating
flux in the whole magnetic circuit, and this again will necessitate

the production of an induced E.M.F. exactly in quadrature with

the flux
;

if the resistance of the winding on D be very low, so

that the ohmic drop due to the magnetising current is negligible,
the applied pressure being in antiphase with this induced pressure
will likewise be in quadrature with the flux. Let B be the in-

stantaneous value of the intensity of the induction in the air gap,
the total flux will be proportional to B, further with the usual

arrangement of a uniform air gap the value of B, the intensity of

flux in which the moving coil is situated, will be independent of

the angular position of that coil, but solely dependent of the total

flux round the circuit. Hence if e is the instantaneous applied
, ., dB , .

pressure we can very approximately write e = a.
-^

,
a being a

constant depending on the magnetic circuit only. If c denote the

instantaneous current in the primary of the transformer, T, the flux

will be proportional to that current provided the current taken by
the secondary attached to the coil of D is very small, which will

be the case if R is large. Hence the E.M.F. induced in the

cLc

secondary will be proportional to
-^

. Thus if the secondary is en-

tirely non-inductive the current in the coil will be given by

d =
-ft

. -r. where A; is a constant. Hence the torque on the coil

being proportional to the mean value of the product of the

induction in the gap into the current in the coil, will be pro-

portional to the expression

This can be written

k 1 f' dc

or, by using the theorem on mean values given on p. 33, reduces

to the form
k 1 f dB ,.

-n .
- C . -j-.dt.R r J o dt

Which immediately leads to

k 1 f
T

n -
I c .e .at,aR rj o
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k
or -~ . W

y
where W is the mean power, hence the torque will be

proportional to that mean power. With a control of the ordinary

type it will follow, as in the ordinary D'Arsonval, that the power
taken by the load will be proportional to the deflection.

Ammeter. It can be seen that the same type of instrument
can be used as an ammeter. Let D be wound with a few turns

and placed in series in the circuit, in which is also placed a low
resistance on which the coil of the instrument is connected as

a shunt. If this shunt circuit be practically non-inductive, which
can readily be arranged by means of a series resistance, the current

in the coil will be nearly in phase with the current in the main.

The flux in D will be proportional to the current for all ordinary
values of the latter since the reluctance is principally due to air.

Further the angle of hysteretic advance will be practically constant

as well. Hence both the induction in the gap and the current in the

coil will be proportional to the main current while the phase angle
between them is nearly constant. It follows that the torque is

practically proportional to the square of the current exactly as in

the ordinary dynamometer.

Voltmeter. In order to use the instrument as a voltmeter

the winding of D is placed in shunt on the mains as for the watt-

meter, but the coil is now put in series with a condenser, the two

being also put across the mains. As before the relation between

the air gap induction and the applied pressure will still be given by

dB

when the resistance of the winding is very small. Let F be the

capacity of the condenser, and assume that it is not quite perfectly

insulating so that it may also be considered as possessing a fairly

high resistance R. The current in the condenser circuit and
hence in the coil will be given by

thus the torque experienced by it will be proportional to

-['B.c.dt,

that is to , ^ ,
JL

at

"Consider the last integral, it is evidently equal to

dB

62
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and thus from p. 33 is zero. The integral thus reduces to

F TR de

TJo d*
'

or from the same page we see that it is equal to

-
I e.-j-.dt.

r JQ dt

On substituting for
-^-

this leads to

F i r
a'rJo

6

and hence the torque is proportional to the square of the virtual

pressure. With a control of the same form as before it follows

that the deflection will be a measure of this square.

It will be noted that no assumption as to the form of any of

the quantities has been made, and hence, within the limits of error

of the apparatus, it is suitable for measuring the different quantities
for any form of curve.

It can also readily be seen that the relative calibration, that is,

the connection between the product of the flux and the coil current,
can be made with direct currents. All that is necessary is to excite

the magnet with a fixed current and then send known small direct

currents through the coil. If the deflections corresponding to these

currents be noted, this will evidently constitute the relative cali-

bration of the instrument. The actual constant can then be

adjusted for any desired power, current or pressure by proper
adjustment of the resistances or capacities of the coil's circuit.



CHAPTER VII.

LOSSES IN TRANSFORMERS.

Losses and efficiency. The losses incident to the operation
of a transformer are the same in character as those found in the

operation of the ordinary direct current apparatus. We have first

the ohmic losses due to the currents in the two coils, and secondly
the loss of energy due to the cyclic changes of magnetism in the

core. Since the condition of operation is that the terminal

pressure is constant and its periodicity is constant, and since we
have seen that in an actual transformer the terminal pressure is

very nearly equal to the primary induced E.M.F., it must follow that

since the latter E.M.F. is equal to the rate of change of flux in the

primary coil, the flux must alternate with the same maximum
value B for all loads, provided only the pressure and its periodicity
be kept constant. But the hysteretic losses will be proportional
to the periods n and will be nearly as the l'6th power of the

induction
;
further any eddy current loss that exists will be pro-

portional to the square of the induction and of the periods.

Hence if v is the volume of the core in cubic centimetres and
A is a constant giving the hysteretic loss per cubic centimetre at

unit periodicity, k being a similar constant for the eddy currents,
we can write the power lost in the iron core in the form

WL = h.v.nB l* + k.v.n*B*,

or for a definite core

Hence in the case where both periodicity and pressure are constant

the total loss of energy in the core will be very nearly constant,
and practically independent of the load on the transformer.

The ohmic loss will be dependent solely on the current that is

being taken, and will be readily found from a knowledge of the

core's resistance. At any but the smallest loads, it is practically

proportional to the square of the secondary current.

Maximum efficiency. The maximum efficiency occurs when
the core loss and ohmic loss are the same. Let WL be the constant
core loss, and let the total ohmic loss be a.ffi, where a is a constant
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and ^P the secondary current. Let the secondary pressure be

and the power factor given by cos X. The output is then *$ cos X
and the input is

The efficiency is given by

rj
=

Hence the maximum efficiency is given by -^ = 0, leading to

'

cos X + WL + a . ffi
2
) cos X = 9% cos X (S cos X + 2a . *$),

Tests of efficiency. As with direct current machines we
have three methods of test possible, firstly the method of measuring
the input and output, secondly of merely measuring the losses in

the apparatus under the given supply conditions, thirdly of coupling
two similar pieces of apparatus together and circulating power
between them, at the same time measuring the loss of energy.

Direct measurement of efficiency. The first method can
be very shortly dealt with. All that has to be done is to measure
the input and output with wattmeters. If the secondary load be

non-inductive, a voltmeter and an ammeter can be used in place
of a wattmeter, but one must still be used for the primary circuit.

Stray power method, one transformer. The second, or

stray power method, consists in determining the losses separately
and deducing the efficiency. This method has been incidentally
referred to in Chapter V, but for completeness will be again
described. For simplicity we will consider that one coil is intended
to have a pressure of 1000 volts, the other a pressure of 100 volts.

It is evident that whether we apply 1000 volts to the one coil or
100 volts to the other the core will be subjected to the same

cycle of magnetism, the periodicity being the same in the two
cases. Hence the core loss can be found by the open circuit test

as follows. Connect the 100 volt coil to mains at that pressure
and measure the energy taken. This will include two losses, the
core loss itself and an ohmic loss incident to the passage of the
no load current. Since the loss of energy in ohmic resistance
is proportional to the square of the current, and since we have seen
that the magnetising current is very small compared with the full

load current, the ohmic loss due to the passage of the magnetising
current is negligibly small. Hence this measurement can be
taken as giving the constant core loss of the transformer, on
whichever coil it be working with as primary. It remains to find

the ohmic loss. This is done by means of the short circuit test.

Connect the terminals of the 100 volt coil directly by a wire. Then
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join up the 1000 volt coil to the mains at 100 volts, connecting
in a wattmeter, a suitable ammeter, and a series adjustable
resistance. The E.M.F. induced in the secondary will now be
concerned solely in forcing the current against the impedance
of the secondary coil and this will require a very small pressure.
Let the resistance in the primary be so adjusted as to permit any
required current to flow in it, say the full load current, and measure

by the wattmeter the power taken. This will, as before, include
two parts, the ohmic losses in both coils and a certain core loss.

The latter will be dependent on the flux in the core and will vary
as the 1*6th power of that flux. But the flux is nearly propor-
tional to the pressure applied, and we saw that instead of the
normal pressure of 1000 volts only a very small pressure will be

required on the coil, hence the core loss in this case will be

negligible in the same way as the ohmic loss was in the first

case. We have thus sufficient data to determine for any assumed
load the core loss and the various total ohmic losses. The efficiency
curve can then be found as follows. Assume a constant pressure
at the secondary

7
terminals, say 100 volts. The output or non-

inductive load will be the product of any current taken into the
assumed pressure of 100 volts. To each output add the constant
core loss and the appropriate total ohmic loss, and the sum will

be the input. The ratio of the two will give the efficiency. The
results of such a test deduced from the data on p. 76 are given in

the table below.

Constant loss= 400 watts.

Copper loss at full load= 500 watts.

Secondary Secondary C-R Total Input Efficiency
current power loss watts loss watts /

300 amp. 30 kw. 500 900 30'9 kw. 97*0
225 22| 272 672 23'17 97'2

150 15 125 525 15'52 96'6
112 11| 31 431 11-68 96-4

30 3 5 405 3-41 88'0

This method has the advantage that it can be used when only
a single transformer is available, but it does not at all test the

apparatus under the normal working conditions since the coils

never have both the full current flowing and the full pressure

acting. This is secured in the next method, which however
necessitates the provision of two identical transformers.

Combined test, two transformers. The third, or combined

test, can be best explained by the following preliminary method.
Let two similar transformers, I and II (Fig. 65), be taken, but let

one of them have one coil provided with extra terminals so that

other pressures than the normal one are available. For example, let

the normal pressure on one of the coils be 100 volts but let wires
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be brought out at such different points as to give in addition

pressures falling by 1 volt to say 93 volts. Let these coils be put
in parallel mains with a wattmeter connected as shown. Then

Fig. 65.

if the other pair of coils be connected in series with their pressures

opposing, no current will flow when the full number of turns are

employed in II and the wattmeter will read the loss of energy in

the two cores. Now let the connections be so made that the

transformer with the different terminals produces only 99 volts

while the other, of course, still produces 100. The one volt

difference will then be available to circulate power between the

two primaries and hence between the secondaries. The wattmeter
will then read the loss of energy incident to the transformation.

The current circulating will be given by the ammeter joined
in the secondary, and the losses found with that current flowing.

By proceeding in this way we can find the power taken up to full

load current, provided sufficient terminals are available on the

transformer. A correction may be made for the small loss in the

ammeter.

This method is manifestly useless in the case where the two
transformers are of the ordinary commercial type without the

special terminals on one of them. In such a case some other
method must be employed to circulate the power between them.
For this purpose a small auxiliary transformer is used connected
to the circuit as shown in Fig. 66. I and II are the two trans-
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formers under test having their high pressure coils joined in

parallel. An auxiliary transformer has its primary connected

across the mains in series with an adjustable resistance R, while

its secondary is placed in series with the other coil of one of the

transformers, I; the transformer II has its free coil placed in

parallel with the other two on the supply mains. Two wattmeters

are employed, the one W^ being so joined that the power taken by
the transformer C is not measured by it, the other Wz being

connected so as to measure the power delivered by the secondary
of the auxiliary transformer, C. It will be seen that by altering
the value of R different pressures can be supplied to the primary
of G and thus any desired pressure produced in its secondary.
Thus the pressure in the primary circuit of I can be made to differ

by any desired amount from the pressure in the primary circuit of

II, and hence a current of any desired value can be made to

circulate in transformers, and this can be measured by the ammeter
A. The pressure at which this current power is supplied is given

by the voltmeter V. From the method of connection it is

seen that Wl will measure the core loss in the two transformers,
while Wz will measure the power that has to be supplied to

circulate the power between the transformers A and B, or W2 will

measure the ohmic loss. The loss in the ammeter may be allowed
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for as in the last cases, and hence the total nett loss determined for

any current in the transformers. The loss can then be allocated

one-half to each and the efficiency readily deduced in the ordinary

way.

Rejection of lost energy. All the energy lost in a trans-

former is necessarily rejected as heat, and in small transformers

this rejection is made by the ordinary processes of radiation.

For the sake of safety the apparatus is generally contained in

an iron case which is often ribbed to facilitate the radiation. The
actual transference of the heat from the transformer to the case is,

under these circumstances, brought about by convection currents.

in the air in the -case, and to provide a better medium for this

purpose the transformer's case is often filled with oil. This has.

the additional advantage of maintaining the insulating properties
of the covering to the wires, and carrying the heat direct from the

metal surface instead of from that of the insulation. The rise of

temperature will depend on the load carried, and since the rate of

lass of heat due to radiation is practically proportional to the

temperature rise, while the losses are constant as far as the core

loss, and proportional to the square of the current for the ohmic
loss, this rise of temperature will increase more rapidly than the
load. It is found in practice that if it exceeds a superior limit in

the neighbourhood of 70 C., progressive deterioration takes place
in the insulation. The test of a transformer should, then, include
a measure of its temperature rise after definite conditions of load

have been maintained for definite periods. This can be done by
thermometers placed in contact with the parts whose temperature
is required to be known but, in the case of the windings, is best
found from a measurement of their resistance in the usual way.
From the known value of the coefficient of increase of resistance

of copper, that is 0*4 per cent, per degree Centigrade, the required
temperature can be at once determined: this method has the

advantage of giving the actual temperature of the copper, which
must be somewhat in excess of the surface temperature of the

cores, owing to the necessary existence of a temperature gradient
between the inside and outside of the coils.

With large transformers additional precautions must be taken
to ensure a safe temperature. For let two transformers be taken

working at the same induction and the same current density, then
the average loss will be the same in each per cubic centimetre,
but the area available for rejecting the lost energy only increases
as the square of the dimensions

;
hence in such a case the trans-

former of larger size, when loaded in the same proportion as the
smaller, must exceed it in temperature. This is partly avoided by
using a somewhat lower induction and current density in the

larger, but in addition special means are adopted to reject the
heat. This is done by forced circulation of air through the case,
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or when oil filled cases are used, a system of pipes is placed in

them through which cold water is circulated.

Effect of temperature on the core loss. The effect of an
increase of temperature is to increase the ohmic resistance of the

eddy current circuits and hence will tend to diminish the loss of

energy in the core that results from them. The effect on the

hysteresis loss is in some cases a secular one, as it is known that

certain descriptions of iron show a gradual and considerable

increase of hysteretic loss when subjected to a fair temperature
for some time. Such an effect can only be detected by tests of the

core loss conducted when the transformer is made, and after a

considerable period of working has elapsed. Modern improvements
in the manufacture of iron have largely diminished this source of

increased loss.

Loss in iron, wattmeter method. The no load test of

a transformer or choking coil gives, as we have seen, the core loss

of the same
;

if we wish to find the loss in a given sample of iron,

we have merely to make it into such a choking coil and use the

wattmeter method of measuring the loss of energy in a given

sample of iron, one which has many advantages. The sample of

iron having been made up into a choking coil, is connected to a

source of current giving as nearly as possible a sine curve of

pressure at a known periodicity n. In the circuit is placed a

wattmeter. The choking coil is provided with a secondary circuit

of fine wire of a suitable number of turns T to which is attached

an electrostatic voltmeter. Various pressures are applied to the

primary terminals and in each case the power taken and the

pressure are read. The power will be that absorbed by the iron

core together with the ohmic loss in the circuit. The latter can

be allowed for if an ammeter be placed in series so that the loss

in the winding can be calculated from its measured resistance. The
nett loss in watts divided by the volume in cubic centimetres and
the periods per second gives the ergs per c.c. per cycle lost in the

core. The induction produced can be found as follows : if be the

reading of the voltmeter, since the pressure produced will be very

nearly the same in form as the applied pressure, that is sinusoidal,

it will follow that the maximum pressure will be *J%. But if B is

the maximum induction in the iron core, the section being S we
know that the maximum pressure will be B . S . T . ZTTH, hence we
have

x 108

The area of the iron's section is best found by determining the

specific gravity of the sample and the linear dimensions of the
core

;
if the weight of the whole be then found the section can
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be at once calculated. Hence we can find the maximum induction
in the iron and thus the relation between this maximum induction
and the nett loss per cubic centimetre per cycle. The ordinary
circular washers offer some difficulty in winding for different tests

and it is desirable to avoid this if possible. The student will find

described in a paper by Mr G. F. C. Searle, Journal I. E. E. vol. 34,
a form of magnetic circuit which enables strips to be used and does
not necessitate rewinding each sample for test.

Example. The curve given in Fig. 67 was obtained in this way,
and as an example of the method of reduction the following details

may be given.

sooo

6000

2000

2000 4000 6000

M&ximum Value of B.

sooo 10000

Fig. 67.

Section of iron = 21'3 sq. cm.

Volume of iron = 1563 c.c.

Resistance of magnetising coil, R = 0115 ohms.

Turns in the secondary coil = 200.

Periods per second = 85.

If <" is the reading of the voltmeter the constant givingB from its readings is then

108

V2x,rx 85x200x21-3
* r 62 '5 *
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If ^ is the current and W the watts in the same case, the nett

watts will be Wn W ffiR, and the ergs per cubic centimetre

per cycle will be
Wn x 107

85 x 1563
or

In one case the pressure was 74 volts, the total power 23*8

watts, and the current 1*6 amperes, giving 23'5 for Wn . Hence
the induction is about 4630 and the loss per c.c. per cycle is 1766

ergs. A set of similar observations were taken from which the

numbers plotted were found.



CHAPTER VIII.

THE SERIES MOTOR.

WHEN the consideration of the properties of the rotating field

is undertaken it will be seen that by the use of the same it is

possible to obtain a satisfactory motor, and that such a motor will

possess very closely the characteristic properties of the direct

current shunt motor, that is, it will maintain nearly constant speed

up to its full load. For many purposes such a motor fulfils the

required conditions, but in certain cases, such as for rapid and

frequent accelerations of tram-cars, etc., the paramount feature of

the motor necessary is rather the production of a large torque when
the speed is slow, and a comparatively small one when the speed is

high. The above motor cannot without certain additions even

approximately fulfil these conditions without excessive waste of

energy, and for many purposes it would be desirable to have a

motor possessing the valuable properties of the ordinary series

motor, especially when traction is the object. Let a series motor
be supplied with alternating currents, since both the field and the

armature fluxes change with the current, the torque will always be
in the same direction, and hence such a motor would produce a

definite positive torque, but certain alterations must be made in

its construction. Firstly, the field must be laminated as well as

the armature to avoid eddy current losses. Secondly, to reduce the

self-induction the field must be wound with as few turns as

possible, and this would entail the armature having more turns.

Thirdly, the armature when carrying the alternating current will

produce an alternating flux of the same nature as the cross flux

produced by a direct current armature, its direction being at right

angles to the main flux. The armature conductors in cutting this

flux would evidently produce an E.M.F. which would have to be

equilibrated by the main pressure. This flux can be annulled by
a compensating winding put in series with the armature, but so

connected as to oppose the magnetic effect of the armature, and

having such a number of turns that the total number of ampere-
turns in it is equal to those on the armature, as shown at W, W in

Fig. 68. In the present case, since the current is alternating, it is not
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necessary to actually put this coil in series, it can consist of a set

of short-circuited windings, the current in them being induced by
the varying flux due to the armature, so that this auxiliary winding

Fig. 68.

acts with respect to the armature as a short-circuited secondary
would to a transformer and hence nearly annuls the armature's

flux. The flux from the field will evidently produce no current

in this short-circuited coil since on the whole it is not cut by
that flux, and thus there will be no nett E.M.F. produced in the

coil by the field flux. In this way it is possible to reduce the
self-induction of the whole motor to practically that of the field

coils only.

Now consider the action of the field flux on the armature
; if

this be at rest, since the flux passing down ABC is the same
as that passing down ADC, and since the conductors in those

two halves cut this flux in the opposite direction, there is no nett

E.M.F. produced in the armature by the direct action of the field
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flux. When rotation takes place, an E.M.F. will be produced in

exactly the same way as in the direct current motor and this E.M.F.

will, as in that case, be proportional to the speed and to the flux

of magnetism due to the field, though it will necessarily be an

alternating E.M.F. Thus if the total flux cut by the armature at

any moment be < and if the armature be rotating at n revolutions

per second and have T conductors on its periphery, the E.M.F. pro-

duced, from analogy with the direct current case, will be (f).n.T,so
that so far there is much the same state of things existing as in a
direct current motor. Now consider the state of affairs in a coil

that is undergoing commutation, which will take place in the

neutral zone since the armature reaction is annulled. As in the

direct current motor it will be necessary to commute the current

in the coil, but in addition it will be seen that while the coil is in

the position of commutation it is situated in such a way relative

to the field magnet that it is experiencing the full flux of

magnetism from the same, it must thus be acting as a short-

circuited secondary of a transformer and hence very heavy currents

can be generated in it
;
thus there will be an entirely new factor

to consider in commutation. This effect can be to a large extent

overcome in several ways ;
one method is to connect the coils to the

commutator by strips that have a higher resistance than is the case

in a direct current motor (see Fig. 68, lower half): during the

commutation period this interposes a high resistance in the circuit

of the coils under the brush and thus prevents the currents induced

having large values. As regards the main current the resistance

added to the armature is less than that in the local circuits,

as is evident from the figure, where it will be seen that these

strips are in series with regard to the local circuit formed by a coil

under a brush, but in parallel as far as the main current flowing

up to the brush is concerned. Other devices, such as providing
reactances in the circuits of the armature coils which are in series

for the position when the coil is under the brush but annul one

another as far as the main current is concerned, or the provision of

some form of reversing pole-piece, have been used with success in

diminishing to a very great extent the commutation difficulties.

The following graphical construction can be derived under
certain assumptions for representing the operation of the motor.

The total flux impressed on the circuit can be assumed to vary in

a sine manner and to be given by $ = <I> sin pt. This flux is due
to the current that the motor is taking, and since there is an air

gap in the circuit, the angle of hysteretic lead will be small, so

that we may very approximately write the current as being given
by c = C sin pt. Let us assume that the whole machine can be
treated as if it had a definite resistance, R, and a definite reactance,

8, the former- being such as to allow for all the losses of energy in

the same. This cannot be exactly true, the ohmic resistance will

be nearly constant, but the losses incident to rotation and to
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hysteresis will evidently not be so. If the field be non-saturated,
as is practically the case, the reactance will be constant or very

nearly so. On this assumption the current will be accompanied
by two pressures, the one CR . sin pt in phase with it, the other

CS . cos pt in quadrature. The vectors representing these two

quantities will evidently preserve a constant angular relation, and
that between their resultant and the vector for the reactance

pressure will likewise be constant. This will be denoted by <f>.

There is in addition the E.M.F. due to the rotation of the armature,
which in this case will be n . T . <& . sin pt. Hence we may show the

relation between the quantities as in Fig. 69. The line 0V

B

Fig. 69.

represents the applied pressure of which the two components are

(RC 4- nT<&) sin pt and S.C.cospt. On this line draw a semi-

circle and let S be any point on it, the lines VS and OS are the
two components, let VS be S . C, then OS is (R . C + nT. <>). If

the part SE be cut off equal to R .C, it follows that the other part
OE is n . T . 4>, that is, OE represents the E.M.F. due to the rotation

of the armature. Since SE is the vector representing the pressure

required for the resistance, it follows that it can also be taken to

represent the current to some appropriate scale; the aagle SVE is

evidently the constant angle < referred to above. Now draw the
line VQ making this same angle, </>,

with V that VS makes with
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VE, and draw the line OB perpendicular to V. A semicircle on
OB will evidently pass through Q since BQO and VQO are both

right angles, this semicircle will cut SO in R and we will first show
that OR is equal to ES. For we have

OR = OB.cosBOR = OF.tan0.sin VOS = VS . tan
c/>
= SE.

Hence it follows that the locus of R will be this smaller semicircle,
or since the current is proportional to SE, the locus of a vector

drawn from to represent the current is the above circle. Again,
since the angle SVE is always the constant, </>,

and VSO is a right

angle, the external angle VEO is constant, and it follows that E
will also describe a semicircle drawn on the line OD perpendicular
to OQ as diameter, this circle also passing through V. We can
now see that the line QR is always proportional to OE, that is to

the E.M.F. produced by the rotation of the armature. For the

angle EO Y being the angle between the tangent Y at and the

secant OE at is equal to the angle in the segment EZO. But
EOY and EOQ are supplemental, as are the angle in the segment
QXR and the angle ROQ, hence the angle in the segment EZO
and that in the segment QXR are equal ;

it follows that the chords

OE and QR are in the ratio of the diameters OD and OB, that is

in a constant ratio, and thus the line QR is always proportional to

the E.M.F. of the armature. We can then draw the small semi-

circle to a larger scale, as in Fig. 70, and use this to represent all

the different quantities.

Since the motor will always be working on fairly low inductions

the reluctance will be practically that of the air paths only or will

be approximately constant, hence the field will always be nearly

proportional to the current, and hence the torque produced will be

Fig. 70.

nearly proportional to the square of the current or to the square
of OR. Again, it is evident that the speed is directly as the E.M.F.

of the armature and inversely as the field or the current, it is thus

proportional to the ratio QR/OR. The output will be proportional
to the product of the armature's E.M.F. and the current or to
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QR . OR. If the line RL be drawn perpendicular to OB it will

give the part of the current that is in phase with the pressure and
hence the input will be 0V .RL, and thus the efficiency will be

readily found.

In an actual motor the losses are far from being proportional
to the square of the current as this construction implies and hence
we should not expect the semicircle to give accurately the value
of the current. If a test is made it will be found that the locus of

the current vectors is no longer a semicircle but very closely lies

on an arc of a circle which is somewhat larger or, in some cases,
somewhat smaller than the semicircle. In any case the circle being
assumed to represent the facts of the case it can readily be found.

Let the current, pressure and power taken on standstill be
measured, and deduce the power factor from this, which gives the

angle VOQ in Fig. 70. The corresponding value of the current
vector can readily be found, all that is necessary is to increase the
observed value of the current taken at the pressure used in the
ratio that that pressure bears to the ordinary working pressure of

too
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the machine, and this will give the distance OQ. If the motor be

loaded to any desired extent, and the pressure, which should

be the proper working pressure, the current and the power be

measured in this case, we evidently have sufficient data to

determine the value of such a current vector as OR and the angle
VOR. Hence the three points 0, R, and Q being known, the

circle can be at once drawn.

In Fig. 71 are given curves showing the relation between the

current taken by a series motor of modern design and the brake-

horse-power, tractive effort and speed, efficiency and power factor.

The tractive effort and speed refer to the special car on which the

motor was used, which was one for railway work. The motor was

designed to operate at 250 volts, and it will be seen that in all

respects the results will bear comparison with a direct current

motor. In particular, the mechanical characteristics are as favour-

able for traction purposes as those of the direct current one.

When traction is being undertaken by direct current series

motors the car is equipped with two or more motors which can be

put in series or parallel. In such a case certain relations exist

/*r POSITION 2 HOPOSITIQM. 3* POSITION. +TH POSITION. 5 POSITION

Fig. 72.

between the torque and speed at definite pressure applied to the

system, which relations depend on the coupling of the motors and
are attained with no extra apparatus. Such relations are termed
the "free running" conditions, and are such that no waste of

energy occurs other than that unavoidably present in the motors.
If it is desired to obtain any other speed-torque relations than
those corresponding to the free running conditions, this can only
be attained by using a different pressure at the terminals of any
such combination, and with direct currents such diminution of
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pressure can only be produced by means of permitting the current

on its way to the motors to produce a drop in a series resistance.

Hence any but the free running series or parallel conditions

necessitates an extra waste of energy. In the case of alternate

currents we have the possibility of obtaining different terminal

pressures on the motor by means of transforming from the given

supply pressure to any other pressure suitable for the conditions

required to be fulfilled. For this purpose it is usual to employ an
auto-transformer (see p. 80) with tappings brought out at such

points as to give the desired pressure. The maximum pressure
used in motors varies to some extent, but in the motor whose
curves are given it was, as stated, 250 volts. In addition to this

other less pressures are required which have the values shown in

Fig. 72. It will be noted that the tappings are not brought
direct to the auto-transformer, but two points are tapped off from

it, and an inductive coil is bridged across these points, from the

centre of which the pressure to the motor is taken off. This coil

is called a "preventive" coil, and is of use in damping out by
inductive action any short-circuit currents that may flow in the

process of switching from one tapping to another.

Since such an auto-transformer gives a wide and easily changed

range of pressure, there is no necessity, when more than one motor

is used on the car, to provide for any other connection of the same
than the parallel one, it is however necessary to provide a switch

gear to reverse the connections of the fields relative to the

armatures in order to provide for reversing the motion of the car.

In general for heavy traction four motors of the type considered

are used in parallel.

It should be noted that since the pressure applied is readily
transformed in any desired ratio, the actual value of that applied

pressure does not affect the car equipment, very different pressures
on the line can be utilized by using auto-transformers of the

proper ratio to reduce the line pressure to the standard pressure

required by the motors. Further, all the manipulation is on the

low pressure side of the auto-transformer and the high pressure
one needs only a switch and fuse.



CHAPTER IX.

THE E.M.F. OF AN ALTERNATOR.

E.M.F. of an alternator. The E.M.F. of an alternator is

always specified by its virtual value and thus depends on the form
of the instantaneous curve. For example, with a sine wave of

pressure we know that =* ~ E. If the curve be a pointed or

triangular one, it is readily seen that the relation is =j^ E,
\lo

while with a rectangular shaped wave we have = E, thus the

same virtual E.M.F. will be produced with very different values of

Flux

I

!
. M.F.

w
Fig. 73.



THE E.M.F. OF AN ALTERNATOR 103

the maximum depending on the form of the wave. This form
varies with two factors, the form of the induction curve, that

is, the relation between the angular position of the armature
and the flux through a single loop of the armature, and the

arrangement of the different loops forming a coil on it, that is, on
the nature of the winding.

Induction curve. Influence of form of flux. Let us
first consider the effect of the form of the induction curve, and
let the coil consist of I loops all concentrated in one place rotating

Fig. 74.

with uniform velocity in a uniform field as in Fig. 1. In this

case, as we have seen, the flux through the coil will be a sine

function of the time. With any other form of induction curve

the E.M.F. one will differ from a sine, and will be widely different

from that of the induction curve. In Figs. 73 to 75 are shown
three assumed induction curves and the corresponding E.M.F. ones

for a single loop. In each case the ordinate of the E.M.F. curve is

roughly drawn to be equal to the slope at each point of the

induction curve. On referring to the first two it will readily be
seen that a flat induction curve will produce a pointed E.M.F. one
and vice versa. In the third case an induction curve having four

different slopes in the half period is taken and the very different

E.M.F. curve resulting is seen. The student should sketch in

various forms of induction curve and deduce the corresponding
E.M.F. ones.

In any one curve let the maximum flux through a single loop
of the coil be <f>

; since the coil consists of I concentrated loops the

maximum flux passing through the armature will be <!>/, hence
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when the coil turns through a quarter revolution, starting with its

plane perpendicular to the flux, the change of flux will be <&l.

If the armature execute n rotations per second the time taken for

this quarter turn will be -r- seconds, and hence the mean rate of

change of the flux will be ^n^l. The same will hold for a half

rotation, and although any further rotation will result in change
in the direction of the flux, we can say that in any given case the
mean E.M.F. produced will be given by the above expression : the
curve in Fig. 76 shows these successive additions of flux in a

revolution. It is customary to deal with the number of con-

ductors that are at any instant in series instead of the number of

loops, and it is evident that the former are twice the latter, hence
if T denote as usual the conductors that are in series we have
21 = T, the expression for the mean E.M.F. produced with the
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maximum flux <, will be mean e = 2. <&nT. This must be true what-

ever the shape of the induction curve, and thus if we take the case

Fig. 76.

where that curve is simple harmonic such as is produced by rotation

in a uniform field, we know that the virtual EM.F. is - or I'll

times the mean, hence in such a case we can put S 2*

The student will possibly feel a difficulty at this point. Let the

same field be existent, but let the conductors be joined up so as to

form a direct current armature of T peripheral wires. We know
that then the E.M.F. is given by E = <&nT, so that the alternator

apparently produces 2*22 times the E.M.F. It must, however, be
recollected that in the latter machine all the conductors have
been taken to be in series, while in the former only half are in

series at any moment, T being in both cases the total number of

peripheral conductors. In the direct current machine the current

has two paths inside the armature and but a single one in the

alternator, hence with the same winding the alternator could only

carry half the current. Thus while the E.M.F., with concentrated

winding, is 2'22 times as much in the alternator, the current is

but one half.

With any other curve of magnetic flux than the sine having
the same maximum, the virtual E.M.F. produced will still be

proportional to 4>, n and T but the factor will no longer be 2'22,

we can however say that in any case S=k. <&nT where the k has

various values depending on the form of the induction curve and
that when the latter is a sine function of the time, this factor is 2*2.

Influence of form of winding : breadth coefficient. The
next point is to see what effect is produced when the winding is

*
field ^ g

Fig. 77.
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not concentrated with all the loops in the same place, but spaced
out on the armature core. This must be always the case to some
extent in practice, and we shall see that for some reasons such an

arrangement has special advantages. Consider a coil of two loops

rotating in a uniform field, if the two occupy closely the same

position, and if e is the E.M.F. due to either, the E.M.F. of the coil

will evidently be 2e. Now let them be wound at an angle 6 as

shown in Fig. 77
;
in the figure for the sake of clearness the coils

are shown rotating about an axis parallel to their own axes,
with a uniform field in the direction of the arrow

;
this evidently

makes no difference to the E.M.F. produced, it will still be sinu-

soidal and will have a definite maximum equal to the expression

given on p. 2. If the two vectors AA^ and BBl be drawn
each of length equal to the maximum E.M.F., e, in either coil

and making the angle 6 with one another, the projections of these

will give the corresponding instantaneous E.M.F.S. If the two loops
be now joined in series in the proper direction so that the E.M.F.S

add, the resultant E.M.F. will have a maximum given by the sum
of the two vectors as shown in the figure at OA and OB, this

resultant being 00. It will attain its maximum at an angle 6/2
before BBl and the same angle after AA^ and thus that maximum
will be attained when the constituent loops lie at that angle to

the direction of the field, or in other words when the resultant

00 lies along that field. Hence in any other cases of this nature

the position in which the compound coil lies when it is producing
the maximum E.M.F. must be such that the axis of symmetry of

the set of vectors representing the constituent E.M.F.S is along the

direction of the uniform field.

In this case the resultant of the two vectors is evidently
r\

2e . cos - since the length of either is e. Hence the spacing of the

two coils has resulted in reducing the E.M.F. in the ratio of 2 . cos
^

r\

to 2. It follows that the E.M.F. will be given by E = 4*4 cos <E>.
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Thus if in any similar case the virtual E.M.F. in a constituent

loop is given by 2'2 . 4>?i when the field is uniform, the E.M.F.

due to the combination can be written ^"=2*2 .6. <&nT, where 6

is a number less than unity. This number is called the " breadth

coefficient" of the arrangement and we will now calculate it for

certain arrangements of coils, in each case taking the position of

maximum E.M.F. for the combination, that is the symmetrical

position referred to above.

First take the case where the two loops are at right angles, it

will readily be seen from Fig. 78 that in this case the ratio of the

actual E.M.F. to that which would have been produced with

Fig. 79.

concentrated windings of the same number of loops, that is the

breadth coefficient, 6, is ~ or 0707. The next figure (79) shows

three loops at 60 in which case b is evidently or 0'667, while

with four loops (Fig. 80), we get b = f (cos 22J + cos 67) or 0'653.

Fig. 80.
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The limiting case will be when we have a uniformly wound coil with

a distributed winding of many turns, such for example as one of

the type of a Gramme ring (see Fig. 81). Consider the position

Fig. 81.

where the E.M.F., due to the whole assemblage of coils, is a

maximum
;
the loops will then be symmetrically spaced round the

middle loop, M ;
this will be producing the maximum E.M.F., e.

Any loop making the angle <f>
with this one will give an E.M.F.

,

e cos <. Let there be T loops, then the loops in a belt of

T
breadth d<j> will be .

d(f>
and the E.M.F. due to the whole set of

7T

loops which occupy half the circumference will be
a

Te p , . 2Te- cos 6 . dd> or -- .

7rj n TT

2

If they were concentrated the E.M.F. would have been Te. Hence
2

the value of b is or 0'635.
7T

This last case would be realized in the case where an ordinary
direct current armature has two opposite points in the winding
connected to slip rings. Since only half the coils are in series if

we still use T for the total surface windings our expression for the

E.M.F., assuming a sine flux, will be for concentrated windings

J
<&nT as the coils in series are only T/2. Since the

9
breadth coefficient was found to be

,
the virtual pressure between
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the rings will be =r=<l>nT. We can derive this result in
y L

another way. Since the maximum of the alternating E.M.F. must,
from the nature of the case, be the same as the direct current

pressure, it will be 4>nT, hence the virtual value of it will be

This extreme form of distributed winding is only found in the

case just considered, where slip rings are used in connection with

a direct current armature, this apparatus is called a Rotary
Converter and will be dealt with later on. The ratio determined
above is not exactly fulfilled even in this case since the induction

curve is not a sine curve in actual cases.

In some cases a similar distributed winding is used which
embraces less than 180 (Fig. 82). It is easily seen that if the

Fig. 82.

angle subtended by such a winding be denoted by 2\jr the value

of b is given by ^-y
I cos < . d<f> or

^
. For example if the

coils cover a quadrant -^r
= 45 and b becomes 0'90, with an angle

of 120, 6 is 0'82, while with one of 60, b is 0'95.

Since with a concentrated winding and any form of induction

curve we found that the E.M.F. produced is & = k . <&nT, if the

same winding be distributed we must write =k.b.<&nT, where
b is the breadth coefficient. Combining the two constants into

one we get =K .<>nT; the value of K varies from 0'6 to 2'3

in different types, being greater for concentrated than distributed

windings.

Multipolar fields. Up to the present we have considered

that the armature producing the E.M.F. rotates between a pair of
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poles, and thus one period is produced per revolution. In practice
the periodicity employed varies between about 25 and 100 depend-

ing on the circumstances of each case. Thus to attain a periodicity
of 80 the armature would have to revolve at 4,800 R.P.M. which is

far greater than the ordinary speed of any prime mover other than

some forms of steam turbine, and is greater than is desirable for

driving by belts, etc. It becomes necessary, therefore, to provide
more than a single pair of poles in the field magnet in order that

the necessary periods may be produced at the desired speed of

the prime mover. Thus if such a prime mover rotates at such

a speed as to cause the dynamo to make m R.P.M. and if we require
n periods per second it follows that the dynamo must possess
a number of pairs of poles, p, given by the equation

m
Consider such a crown of eight poles, or four pairs, as

in Fig. 83, and let our coil be fixed to a core and rotated as

Fig. 83.

shown. Apart from the fact that the curve of flux into the coil

is of necessity no longer sinusoidal with time, the coil will experi-
ence the same cycle of flux changes as it passes from one of the
north poles in the crown to the next one, as it would have

experienced in simply rotating once between the two polar faces

in the elementary case. Thus if we call the distance (whether
angular or linear) between the centre lines of two successive
similar poles, the pitch of the poles, we see that the coil has one

period produced in traversing the pitch, or that the pitch corre-
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spends to 360 of the period. The pitch is sometimes referred to

as containing 360 electrical degrees, although in this case it

corresponds to an actual motion of only 90 in space. Instead of

having all the loops of the coil wound on one projection of the

armature it would manifestly be an improvement to wind the

same loops in four symmetrically placed projections as in Fig. 84,

the direction of winding of all these being the same. In this case

we have half as many coils as poles and the winding is called

hemitropic. If it is desired to have the same number of coils as

poles, all that must be done is to wind eight coils, one for each

Fig. 84. Fig. 85.

pole, but in such a way that the successive intermediate coils are

connected in the reversed direction to the others, since at the

instant they are opposite the south poles of the crown, the first set

is opposite the north poles, and in order that the E.M.F.S produced
in each coil may add, the coils in the two sets must cut the fluxes

in opposite directions. This condition can be fulfilled in many
ways; one of them is shown in Fig. 85. For full details of the

numerous forms of windings the student is referred to any standard

book on the subject.

The windings of the coils in the armature is now usually
carried out in slots left in the laminated armature core. The
latter is formed in the same way as the direct current cores by
assembling thin washers of soft iron on a shaft, the washers having
teeth stamped in them to form the slots. In a concentrated

winding there would be one or two such slots per pole, in the

distributed windings there would be more and the number of slots

per pole will be a measure of the amount of distribution adopted.

The crown of poles is commonly excited with a direct current

passing round suitable bobbins placed on the poles of the crown.

In all but quite small machines it is found that instead of the

crown of poles being fixed and the armature rotating within it

the converse arrangement is advisable. The armature is a more

complex affair than the polar crown and hence can with advantage
be made stationary, furthermore with high pressures such an
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Fig. 86.
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arrangement is safer in operation. In such a case the exciting
current is led into the field magnets by a pair of slip rings.

In Fig. 86 is given a view of a complete alternator of the fixed

armature type, together with a portion of the armature showing
the arrangement of the coils. The machine is actually a polyphase
one, but the design of a monophase alternator would be much
the same.

Forms of E.M.F. curves with crown of poles. We will

now consider the form of E.M.F. curve produced by this crown of

poles in a few special cases. Take first that in which the space

K Pitch - 360' *|
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the sake of simplicity the poles are drawn on a straight line base,

and the pitch marked corresponds to one complete period. Let

the armature loops be concentrated and have the same pitch
as the poles, so that each loop just catches the full flux from a pole
when it is opposite to it. The relation between the flux in the

coils and their position, that is, the induction curve, will be as in

the top curve. It follows that at constant angular velocity the

relation between that position and the E.M.F. in any loop will

be as shown in the lower curve since the E.M.F. is the change
rate of the flux. Let the coil have three concentrated loops,
then the E.M.F. will be the same shape as the above curve of

E.M.F. but the ordinates will be three times as big. Now let

the same loops be placed at positions distributed along the

armature
;
each loop will give its appropriate E.M.F. of the same

shape as the original curve of E.M.F. and the same height, but they
will be displaced laterally, this is shown in Fig. 88, where the

1
3
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the simple harmonic curve. It can be shown that any other

alternating quantity whatever can be considered to be made up of

a set of such quantities of different amplitudes and having
frequencies which are simple multiples of that of the alternating

quantity. Each member of the whole series of such sinusoidal

quantities is known as an harmonic of the alternating quantity,
the one having the same period as the quantity being called the

fundamental and the others being called the second, third, fourth

etc. harmonics. It will be seen that they fall into two sets, those

having an odd number of times the period of the fundamental, and
those having an even number of times that period. The former

Fig. 89.

(including the fundamental) are called the odd harmonics, the

latter the even ones.

Consider the case shown in Fig. 89 where a fundamental has

Fig. 90.

82
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been combined with its second harmonic, the two starting at zero

together. At the first zero point of the fundamental the two
harmonics increase together, while at the second zero point they
increase in opposite directions; it follows that the form of the

resultant curve as it rises from one zero value is different from its;

form when rising negatively from the other, and further it is

evident that this result is true for all the even harmonics. Now
in any alternating pressure or current it must follow, from con-

Fig. 91.

ditions of symmetry, that the form of the curve as it is increasing
in value from zero cannot depend on the direction in which it is

changing, and hence no even harmonics can occur in the ordinary

Fig. 92.
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cases of alternating pressures or currents. Now take the cases

shown in Figs. 90 to 92, where the fundamental is taken with its

third harmonic. The three cases show the third harmonic having
three different phase relations at starting; in Fig. 90 the

fundamental and the harmonic rise together from zero, in

Fig. 91 the harmonic rises oppositely to the fundamental or is

antiphased at the start, and in Fig. 92 the harmonic does not

attain its zero till the fundamental has gone through 30 of the

full period. It will be seen that very different forms of curve

result with the same harmonics depending on the relative phase of

the two. It follows that the expression for the compound curve,
in addition to the amplitudes of the harmonics, must contain the

relative phases. The mathematical expression for the above

cases will be respectively

y = A! sin x + A s sin 3#, y = A l sin x A s sin 3x,

and =

where
<f>3

is the angle shown, x is used for the independent variable

instead of time to save writing. The whole abscissa of the

fundamental will be 360 in degrees or the periodic time T in

seconds.

If the curve be more complicated in form it is necessary to

include more harmonics than the third, each with its appropriate

angle of lag, and the complete expression for any curve whatever
will be

y = A-L sin x + A 3 sin 3 (x <f>3) + A & sin 5 (x </>5) + etc.

By assigning the proper values to the amplitudes and phase

angles this expression can be made to represent any assigned

alternating quantity. In most cases of E.M.F.S and currents we

rarely want higher harmonics than the seventh, though in certain

circuits the effect of still higher ones has to be taken into account.

Effect of harmonics on current curve. Let us now
consider the effect of the higher harmonics on circuits of the

ordinary type. For example let the E.M.F. be given by

e = E! sinpt + E3 sin 3pt + Eg sin 5pt,

and let it send a current through a circuit of resistance R and
self-induction L. Each harmonic in the E.M.F. will produce its

appropriate current. Thus the fundamental will give the current

Cl
=

(7

where
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The two higher harmonics will give the currents

and

where tan X, =__3pLR and tan X5

5pL
R

The total current will be the sum of these three currents. It

follows that in this case the harmonics are much less evident in

the current curve than in the E.M.F. one, and that the harmonics

are altered in phase, hence the current curve is very different in

shape from the E.M.F. one. In the case of a condenser being

supplied by the same E.M.F. the three currents will be

Cj
= E l .pF .cospt,

cs
= 3.E3 .pF. cos 3pt and c5 = 5 . E 5 .pF. cos 5pt.

Thus in this case the amplitude of the harmonics will be increased

in the current curve. It will be recollected that when both

Fig. 93.
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capacity and self-induction are present the phenomenon of re-

sonance occurs for certain relations between the values of these

quantities and the periodicity, it follows that with a compound
curve of pressure, resonance may occur for any of the periods

corresponding to any of the harmonics. Thus in the present case

resonance may occur for the three relations

LFp* = 1, 9 . LFp* =1, 25 . LFp* = 1
;

where p denotes 27m for the fundamental, and in more compli-
cated cases a further number of similar expressions will hold.

Thus when waves of non-sinusoidal form are used the chances of

resonance are increased. In modern systems the constants of the

supply circuit, including mains etc., is such that resonance for

harmonics of other than fairly high period is not likely to occur,
and even then the current due to the harmonic is kept within
reasonable limits by the resistance of the circuit.

Fig. 93 shows the current curve in the case where the con-

ditions of the circuit were such as to make even the 13th harmonic
of some importance, resonance having occurred for that harmonic
under certain circumstances.

Virtual value of a complex quantity. It is often impor-
tant to find the virtual value of such a quantity as we have been

considering. Let y denote the instantaneous value of the same
and ylt y3 ,

and y5 etc. the corresponding instantaneous values of

its harmonics : then we have, summing over a period,

2 f
T

-
(Mfc

TJo

But the latter integral is zero since the integral of the product of

two sine quantities of different commensurable periodicities is zero

over a period. Thus if & is the virtual value of any E.M.F. and

^i, <^3 &s etc. the virtual values of its harmonics, by taking means
on both sides of the above we evidently have

It will be seen that this virtual value is independent of the

phase angles of the harmonics.

This fact is also evident from the consideration that energy is

not a vector quantity, and hence the heat produced by any complex
current in a definite resistance is merely the arithmetic sum of the

heat produced by each separate component. From this it follows

immediately that the square of the virtual value of the -complex
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current is the sum of the squares of the virtual values of each of

its components.

Power due to the harmonics. The fact that power is

a scalar quantity further leads to the following result. Let the

virtual values of the different harmonics in the pressure curve be

\> &s> 5 etc. and those in the current curve be ^i, 3̂ , ^5 etc.,

further, let the phase angles between these several harmonics be

\, ^s, XB etc. It would evidently be exactly the same if the power
were being supplied by a set of machines all rigidly geared and

compelled to move at the proper relative speed and phase, and if

each produced the appropriate current and pressure, hence the

total power will be given by
W = $i cos \! + <^8 cos X3 + 8<&6 cos X5 + etc.

Hence each harmonic is only productive of power with its corre-

sponding harmonic in the current curve. Let the total power be
the same in amount, but due to the passage of the equivalent
virtual current <$ passing under -the equivalent virtual pressure t

these being determined as just described. Then this power will be

given by <$ cos X where X is the angle of phase difference for

these equivalents and cos X is the true power factor. It evidently
follows that this power factor can be written

cos X = 2 . n<@n cos

It is hence evident that the power factor for a non-sinusoidal load

must vary with the values and relative phases of the constituent

harmonics and hence can only be considered as the cosine of a
definite phase angle when the equivalent virtual currents and

pressure are taken in the expression.

Effect of harmonics on a transformer. Form Factor.
The core loss in a transformer has been shown to be given by

a . n . B1* + b.ri>.B\

where a and b are constants depending on the quality of the iron
and the form and nature of the iron core, while B is the maximum
of the induction in a cycle and n is the number of periods per
second. Hence at constant periods the loss will be dependent on
the maximum induction attained by the iron.

If denote the virtual value of the applied pressure and
Em denote its mean value, we evidently have

/>

where T is the periodic time
;
hence / is a constant for the given

form of E.M.F. curve and is called its Form Factor. Again if 8 is

- edt
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the section of the iron and T the turns on the primary coil the

maximum flux passing through the core will be < = BST.

Further if the flux is changing the change of flux in half

a period will be 2<I>. But if n is the number of periods and time

taken for this change is ^- seconds, the mean rate of change will
2ifi

be 4 . 4> . n, further when the ohmic drops are small this must be

nearly equal to the mean value of the applied pressure Em . It

follows that if we write as usual p %7rn the relation between the

virtual pressure on the primary and the maximum induction in

the core will be given by

or B =E_*_

Thus the maximum induction will vary inversely as the value of

f when the applied pressure has the same virtual value. For a sine

curve we have seen that the value of / is I'll
;
for a completely

flat curve its value is evidently unity, and for a pointed curve

its value will be greater than for a sine curve. It follows that

such pointed curves will produce less hysteretic loss than the

ordinary sine curve. Thus for a curve for which / is 1*4 it will

readily be seen that the induction is about 0'8 of the value for the

sine curve and hence the loss will be less than 80 /o of the loss

with such a curve.

It must not, however, be assumed that such forms of curve are

necessarily the best when all the circumstances are taken into

consideration, as will be evident from p. 119. Further the above

result is only true on the assumption that the hysteretic loss, h,

can be represented by an expression of the form h = r)(3
e
,
where 77

and e are constants for the iron. If this is not the case, the

actual effect of the shape of the E.M.F. curve might be different

from the above result. It is known that e is not a constant

over the whole range of induction commonly used in alternate

current work, and hence the actual effect of the form of the

pressure curve must in fact be determined by experiment.

Effect of distributed windings. As an example in the use

of harmonics we will investigate the case of the E.M.F. of an
alternator with flat topped E.M.F. curve for each loop which was
considered on p. 114. It can be shown that for this curve the

analytical representation of the ordinate is

4
y = E (sin x -f J sin 3x + 1 sin 5# + etc.),

7T

where E is the constant value. In Fig. 94 are given three curves

showing how the addition of the first three terms approximates
more and more closely to the flat topped wave. For the sake of
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simplicity let us take the E.M.F. produced in one of the loops as

being given by
e sin x -\-

-J-
sin 3# -f sin 5%,

x being in degrees of the period. For five such loops in series

placed in a concentrated form the E.M.F. will be just five times as,

great, and thus the harmonics will be present in the ratio

1 : 0-33 : 0'2.

Let the five loops be still in series but distant successively by
15 electrical degrees, thus forming a distributed winding of five

Fig. 94.

loops. Let the centre one be taken as the coil of reference, then
its E.M.F. will be given by

sn sne3 = sn x -4-

The E.M.F.S in the two loops to the right and left respectively
will be

e2 = sin (x + 15) + 1 sin 3 (as + 15) + 1 sin 5 (x + 15),

e,
= sin (x

- 15) + sin 3 (x
- 15) + sin 5 (x

-
15),

while those in the two outer loops will be

e1
= sin (x + 30) + sin 3 (x + 30) + sin 5 (x + 30),

and e5
= sin (x

- 30) + sin 3 (x
- 30) + 1 sin 5 (a?

-
30).

Considering #2 and e4 together we have

^2 4- 4
= 2 sin # cos 15 + f sin 3# cos 45 + f sin 5# cos 75,

similarly the outer two coils, el and e5 , give

<?! + e5
= 2 sin x cos 30 + f sin 3x cos 90 + f sin 5^ cos 150.

The complete E.M.F. for the whole five in series will be the sum
of the above, and is

e = (1 + 2 cos 15 + 2 cos 30) sin x

+ 1
(1 + 2 cos 45 + 2 cos 90) sin Sac

+ i
(1 + 2 cos 75 + 2 cos 150) sin 50?.
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This leads to

e = 4'66 sin x -j- 0*803 sin 3x 0'214 sin 5#.

Hence in the compound curve the harmonics are in the ratio

1 : 017 : 0-046,

and thus we see that the distribution of the winding results in

a nearer approximation to the sine curve. Of course the virtual

value of the E.M.F. is diminished. In the concentrated case it is

1

-^
V 52 + (j)

a + (f)
2 or 3'8 volts,

while in the distributed one it is

4, V4-662 + 0-8032 + 0-2142 or 3'35 volts.
Y 2

So that the greater approximation to the sine form is only
obtained at the expense of a loss of virtual pressure.

It follows, then, that with an assigned form of induction curve the

relative importance of the harmonics can be altered by adjustment
of the winding and thus by proper precautions the form of the

curve of E.M.F. can be made very closely approximating to a sine

curve. Further change can be effected, if necessary, by altering
the form of the induction curve itself, for example by varying the

amount of the air gap along the polar face. It is possible in this

way to largely diminish the amplitude of any harmonic which it

may be desired to eliminate from the E.M.F curve.

It will be seen when the effects of the armature current are

under consideration that these tend to alter the shape of the flux

curve, and hence to alter the form of the instantaneous E.M.F.

Such alteration will in general tend to cause deviation from the

simple harmonic form.

INSTANTANEOUS CURVES.

Point to Point Method. The problem of observing the

instantaneous curves of currents or pressures has received much
attention, but we will only describe two out of the many methods
that have been proposed, the first being the original one due to

M. Joubert. On the shaft of the dynamo providing the pressure
are keyed two carefully turned discs, one is made of brass and the

other is made of ebonite, the two are rigidly fixed together, and
at one point a thin slip of brass projects from the brass disc into

the other as shown in Fig. 95. On these two discs press two brushes

which are carried by an arm capable of being placed at any required

position relative to the magnets of the dynamo and fixed there,

its relative position being shown by a pointer moving over a scale
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as shown. Any apparatus connected to these brushes will have

its circuit made once per revolution. For example let this circuit

consist of the dynamo terminals and an electrostatic voltmeter,

Direction ofRotation.

Fig. 95.

then the latter will indicate the pressure that the dynamo is

producing at the instant the brushes are joined by the slip of brass.

By moving the arm carrying the brushes this can be made any
point we please, and thus from the scale provided for the pointer
on the brush arm the relation between the angle and the pressure
can be found

;
this will be, at constant speed, the same as the curve

connecting time with E.M.F., or in other words the instantaneous

curve of E.M.F. of the dynamo.
In many cases the best voltmeter to employ is a suitably

arranged quadrant electrometer. One point should be noted : it

is only for a small fraction of a second that the pressure is applied
to the electrometer and for the rest of the rotation of the disc the

two brushes are resting the one on the brass disc the other on the

ebonite one. During all this time the charge of the electrometer

can leak away across the surfaces of the ebonite and thus the

reading will be too small : the effect of this can be made negli-

gible if a condenser be put in parallel with the electrometer so as

to increase the charge that is stored in the circuit.

The measurement of the instantaneous values of a current can

evidently be made if the current be passed through a known non-
inductive resistance and the curve of terminal pressure on that

resistance determined in the manner just described.

If a suitable electrostatic instrument is not available the

following modified method may be employed. Let the single
brush that presses on the ebonite ring be replaced by two brushes
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fixed to a bar of ebonite (Fig. 96), let one of these be connected to

the source of pressure that is to be investigated, whether the E.M.F.

of the machine or some part thereof, or the pressure on the ends of

a resistance, and let the other be connected to a sensitive deadbeat

Fig. 96.

galvanometer G. The other ends of the two are connected to a
condenser F, the free terminal of which goes to the brush pressing
on the brass ring. It will be seen that when the strip that

projects through the ebonite ring touches one brush the condenser

is charged and is immediately discharged when the strip touches

the next brush through the galvanometer. The successive im-

pulses thus given to the coil of the latter result in a steady
deflection, since they occur with a period far quicker than its

natural one. The calibration can be effected by placing a known

steady E.M.F. across V, the machine being kept running at

the usual speed. For accurate work care should be taken that

the condenser is fully charged and discharged each contact, and
this can be secured by making the strip somewhat broader than

usual, the pressure measured will be that existing at the instant

the brush leaves the strip. Since the action of the galvanometer
is not ballistic, the ordinary method of shunting to secure different

sensibilities can be used, as no question of variation of damping
can arise in this case, the deflection being a steady one.

In the direct methods difficulty is often met with from the

necessarily restricted range of the electrostatic voltmeter or

galvanometer available. The following null method avoids this.

In Fig. 97 let the load, L, be placed in series with a known
non-inductive resistance, J^, so that the current passes through
both. A battery whose E.M.F. is somewhat greater than the

maximum of the alternate current E.M.F. that has to be measured
is connected to a series resistance, r, and to a potential slide,

MN. If this cannot be obtained, the alternate pressure must
be reduced to the necessary amount by means of a suitable

potential divider. By means of adjusting the resistance r and
the position of the sliders, M and N, any desired pressure can
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be obtained between M and N which can be measured on the

voltmeter V. The points M and N are taken to a reversing keyKl) the other terminals of which are connected in series with

Fig. 97.

the alternate pressure to be measured, the contact maker C,

two terminals of a three-way plug key v, p, and a sensitive

galvanometer G. It will readily be seen that by suitably adjusting
the sliders, etc., the pressure applied by the battery can be made

equal to the instantaneous pressure due to the alternate current,
and that condition will be shown by the galvanometer G showing
no deflection

;
the value of the pressure is read directly on V. To

measure the current it is passed through the resistance R1} and a

second resistance R2 is placed in series with R^ as shown, this

may have the same value as R lt but in any case the ratio of the

two must be found accurately, and each must be capable of

carrying its proper current. The second strip, R2 ,
carries a direct

.current, supplied by a distinct and insulated battery, which
can be adjusted by the resistance P, and measured by the

ammeter A. The direction of this current can be reversed

by the key Kz . It will be seen that when the terminals p and a
are joined, the differences of pressure existing between the two

strips Rl and R2 are opposed on the circuit formed by the contact

maker and the galvanometer. Hence by adjustment of the current

shown by A the galvanometer's deflection can be made zero, in

which case the value of the alternating current at the instant

given by the position of the contact maker can be directly read
on A. Instead of a single contact the double contact method
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of Fig. 96 can be employed. This has the advantage of greatly

diminishing difficulties due to leakage currents from the balancing
batteries if their insulation is not very high.

The Oscillograph. The method just described is called the

point to point method, and has the advantage of giving large

readings, it is, however, somewhat tedious, and since each curve

takes some few minutes to find it is manifestly unsuitable for

investigating cases in which the phenomenon only occupies a few

alternations. For such purpose an instrument known as the

oscillograph is used. We will describe the form due to Mr
Duddell.

This instrument (Fig. 98) essentially consists of a D'Arsonval

galvanometer with a very light coil and a very strong field

magnet. In order that the deflections in such an instrument may

Fig. 98.

accurately follow the current flowing at each instant, the moving
coil must have a natural periodic time which is many times smaller

than the impressed period of any harmonic in the current wave that

is flowing through it, that is, it must be possessed of very small

inertia and have a very great controlling force. The former

condition is secured by making the coil consist of two very thin

and light strips of phosphor-bronze s, s as shown in Fig. 99.
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These strips are placed close together in the air gap of the magnet
and a small piece of light mirror glass M is stuck to them at the
centre. When a current flows in the strips one is sucked inwards
and the other forced outwards so that the little mirror is tilted.

The angle of tilt is small and is nearly proportional to the current

flowing. The controlling force is provided by the resolved compo-
nent of tension in the strips, which tension is given through a pulley
P held up by a screw carrying a spring balance, the latter indi-

cating the tension
; this is made as high as is consistent with safety.

By this means the natural period of the system is reduced to less

than 1/10,000 of a second. The space in which the strips lie is in

Fig. 99.

addition filled with oil of such a viscosity as to cause the motion
to be just deadbeat. Such a coil, as it consists of but a single
turn, will manifestly need a very intense field in the instrument in

order that fair sensitiveness may be attained. This is secured by
providing the field by means of an electromagnet, which is

generally designed to be excited with some convenient pressure
such as 100 volts. In many cases it is desirable to measure
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simultaneously two related quantities such as the pressure and
the current. In such a case two similar coils are placed in the air

gap as shown in Fig. 98.

We must now consider the optical arrangements. The source

of light has to be very intense and is provided by an arc lamp : the

beam is parallelized and passes through a slit and a cylindrical
lens

;
it then passes on to the galvanometer mirror and on reflection

is met by a plane mirror, which in turn reflects it vertically
on to a screen where it can be observed. If this mirror were at

rest the passage of an alternating current in the coil would merely

spread out the spot of light into a line, but if the mirror is given
an oscillatory motion the line will be turned into a curve : in order

that the curve may be that of the current in the strip considered

as a function of the time, we must arrange matters so that (1) only
the forward movement of the mirror is used to reflect the light in

Fig. 100.

order to avoid confusion, the return motion taking place when the
beam is cut off, (2) that the mirror is rocked at a speed equal to

half the number of periods in order that only one period may be
visible at a time, (3) that the distance the spot moves through on
the screen is proportional to the time. These conditions are
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provided for as follows : the source of motion of the mirror is a

small motor which is of the type known as
"
synchronous," and is

driven by the same source of current that is being used for the

test
;

it is so designed as to rotate at a number of revolutions per
second equal to half the number of periods. A screen is driven by
this motor (see Fig. 100) which in rotating cuts off the beam

during half the time of a rotation
;
the mirror is driven by a cam

which is so shaped that the third condition is fulfilled. Thus on

the screen will be seen a spot of light which moves so that the

abscissae are proportional to the time while the ordinates are

proportional to the current in the strip. The general arrangement
is shown in Fig. 101.

Fig. 101.

In the case where it is desired to simultaneously measure the

current and the terminal pressure on any apparatus the oscillo-

graph should be connected up as shown in Fig. 102. The current

on its way to the load, L, passes through a non-inductive resistance

jRa on which one of the oscillograph strips C is placed in parallel,

Fig. 102.

being itself in series with a second resistance R2 . The two

resistances are adjusted so that by tests made with steady currents,

the reading of the displacement of the spot of light on the scale

corresponds to any desired number of amperes per centimetre.

The second set of strips, V, is put in series with a non-inductive
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resistance Es ,
which is again adjusted to give the desired value of

deflection for the pressure of supply. The motor is placed across the

mains before the instrument as shown at M. When this method of

connection is used it will be seen that there is no great difference

of pressure existing between any part of the two sets of strips. In

Fig. 103.

Figs. 93 and 103 are given curves determined by the oscillograph,
and it will be noted that the instrument shows accurately even
the 13th harmonic in one of the cases.

Example. The following example will show one of the uses to

which the determination of the instantaneous curves of pressure and
current can be applied. It refers to the case of a choking coil in

which the curves of current and pressure (Fig. 104) were determined

by the method first described. The ohmic resistance of the winding
on the choking coil was so low that the drop of pressure due to

this cause was entirely negligible, and hence the induced E.M.F.

is practically equal to the terminal pressure. The former is given

by the relation e = T-^- where
</>

is the flux in the iron core

and T is the number of turns in the primary coil. We can
1 [*

therefore write < = -~ I edt, where
<f>

is the flux existing at the

time t, hence the curve of flux can be found from the pressure curve.

Two points must be considered, first, it must be remembered that
the whole length of the abscissa for one period of the curve is

equal to the periodic time T, and hence any integration performed
must be multiplied by the appropriate factor to bring the unit of

92



132 ALTERNATING CURRENTS

length of the abscissae into agreement with this number. Secondly,
we must see where the flux curve is to be reckoned from

;
since

the E.M.F. is a maximum when the flux is zero it follows that we
must start the integration of the E.M.F. curve from the point where

1-5

Fig. 104.

it has its maximum value. By integrating this curve from that

point up to any assumed set of points the curve connecting the total

flux and the time can be found. If the induction is required we
have only to divide by the area of the iron core. The curve of

flux thus determined is shown in the figure.

Since the simultaneous values of the flux and current are thus

known it is easy to plot the curve connecting the two by simply

reading off the corresponding ordinates
;
if these be plotted against

one another we shall evidently get the cyclic curve of the iron core.

When the mean length of the iron and the turns in the primary
are known this can evidently be expressed in terms of the usual

quantities B and H.

As an example of the reduction of such a set of results take

the curves just referred to. The scale of time is such that the

unit of length corresponds to 30, and in this case the periodic
time was ^th of a second, hence the unit of length along the

abscissae is ^ . ^ of a second. The scale of pressures is such
oO \.2t
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that the same unit of length is 10 volts, hence the area of one
1 108

square unit corresponds to volt-seconds, or to

or 103 lines of force, hence if the volt curve be integrated, the

areas must be multiplied by this factor to give the corresponding
total flux. The integration must, as has been said, be started

from the 150 point where the E.M.F. is a maximum, and hence
the flux zero. By counting up the squares, starting from this

point, and reckoning up to any other, and multiplying the result

by the above factor, the flux existing at each of the assigned

points was found, and when plotted it gives the flux curve shown.
The cyclic curve is then readily obtained with, however, as

ordinates the product of flux and turns, and as abscissae, the

current. Its area a therefore gives the value of
/</>

. T . dC. But

we have
<f>
= Bs and H -=-

,
where s is the iron's cross

10 i

section, and I is the length of the iron circuit. Hence we also

have a = -rs.llB.dH. But we know that -rlB.dH is the
4-7T J 47TJ

energy required to carry the flux round the given cycle, hence ^
represents the energy in ergs for the core, or a x 10~8 is the

energy in joules.

The area must necessarily be interpreted on the scales of the

diagram, which are such that unit length represents J ampere on
the horizontal scale, and 2 x 106 lines of force on the vertical one,
that is, each square means 106

ergs, and in this case the area is

about 42 square units, hence the energy required for one cycle is

0*42 joule, or since this work is done in ^th of a second, the rate

of loss of energy in the core is 36 watts.

Since si is the volume of the iron it is evident that by
dividing the result by this volume, the loss per cubic centimetre

per cycle can be readily found.

In the case of very large transformers the hysteresis cycle
can be found in the following manner, which is based on the same
considerations as the last. Let a millivoltmeter be placed in the

high tension side, and let direct current be supplied to the other

winding by means of a battery and a continuously adjustable

potential slide or other device, which will enable the current to

pass, without breaking the circuit, from a definite positive to the
same definite negative value. If this current is allowed in any
way to change an E.M.F. will be produced in the secondary which
can be read on the millivoltmeter. Again, by a proper manipula-
tion of the slide, this reading can be kept at a steady known value.

From a knowledge of the resistance of the whole secondary circuit

it is evident that the rate of change of flux corresponding to
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any reading on the millivoltmeter can readily be found, and hence
when the reading is kept at the desired steady value, the flux

existing in the core of the transformer will be found at once from
the observation of the time that has elapsed from starting the

observation. Hence simultaneous observations of the time and
current are taken under the condition of constant indication of

the millivoltmeter, the relation between the total flux and the

current flowing can be obtained. The area of the cyclic curve

thus obtained will evidently give the loss of energy in hysteresis.
It may be noted that if by wattmeter, or other proper methods,
the total loss in the core has been found, the difference between
this amount and the hysteretic loss will be that due to the eddy
currents in the core.



CHAPTER X.

EFFICIENCY OF ALTERNATORS.

The losses of energy. The losses of energy in an alternator

fall into two categories, those due to the passage of the currents in

the windings and those incident to the rotation. The former are

two in number, that involved in the excitation, Ww ,
and the

ohmic loss in the armature, W . Of these the excitation loss

is readily deduced from the knowledge of the resistance of the

exciting winding or windings and the currents flowing therein.

The armature ohmic loss can best be found by the method to

be described later. The rotational losses are more varied. There
is first the ordinary mechanical loss due to the friction of the

bearings. Secondly there is the hysteretic loss in the core of

the armature. Lastly there are various sources of loss due to

Fig. 105.

the existence of eddy currents, which may occur in different

ways. As in the transformer the armature stampings will of

necessity have a certain amount of eddy currents induced in them
which are reduced in amount as far as is commercially necessary
by using stampings of the proper thinness. But eddy currents

can be produced in other places ;
for example, when the armature

is made with teeth the induction they carry will vary in density
along the polar face (Fig. 105) and hence the latter will experience
changes of flux as the armature rotates which may have considerably
higher periodicity than that of the current. Such changes in

flux will produce eddy currents in the poles themselves
;
these can
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be greatly reduced by the common expedient of laminating the

polar faces in such a way as to prevent, as far as possible, such

currents from flowing. Another place where such eddy currents

can be produced is in the substance of the conductors on the

armature. Thus from Fig. 106 it will readily be seen that the

distribution of flux across the conductors, even when they are

Fig. 106.

wound in slots, will be different when the slot is under a pole
and when it is leaving it, the consequent changes of induction will

again produce eddy currents in the substance of the conductors

themselves. The stray field of the machine may also cut metallic

parts in such a way that currents can be produced. Hence the

rotational loss Wr can be considered as made up of the three parts,
the friction loss, Wf, the hysteretic loss, Wh ,

and the eddy current

losses, We ,
so that we can write Wr

= Wf+ Wh + We . Of these

three components the first is proportional to the speed only,
the second varies very nearly as the speed and as the 1*6th power
of the maximum induction to which the iron of the core is

magnetised, while the third varies as the square of the speed and
the square of the same maximum induction. In most cases the

speed remains constant and hence the loss varies only with the

induction in a given machine. Since the excitation increases

with the load, the value of Wr must increase also therewith, and
this effect will be intensified by any distortion or other alteration

of the field such as we shall see will be produced by the armature
current. The rejection of the heat resulting from these losses is

carried out partly by radiation and partly by the currents of air pro-
duced by the rotation of the armature. It follows that for the same

proportional losses, the rise of temperature will be considerably
less than in the case of the transformer. A temperature test

must be included in these tests as in the case of the transformer.

Efficiency. If it were possible to find the several losses

enumerated above when a machine was delivering power denoted

by W, it is evident that the input would be given by

W+Ww+W +Wr ,
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W
and hence the efficiency by 77

= = = ^- . In many
rf ~\~ VV w -\- W + W r

cases it is quite impracticable to measure the input directly,
as the machines used are of large size, and even in the case of

small ones considerable difficulty would be experienced in making
such a determination, owing to the inaccuracy of transmission

dynamometers, hence the best way is to determine in some
manner the losses and thence deduce the efficiency as in the

case of the transformer. This necessitates the employment of

a source of power for such measurements from the indications of

which the power supplied can be readily found. One very con-

venient form is a rated direct current motor. If a motor with

separate excitation be provided, and if the losses in its armature
for different desired speeds and currents have been carefully

determined, it is evident that when observations of the electrical

input of such a machine are taken the actual nett power it is

delivering can readily be deduced. When such a motor is used to

drive the machine under test by means of a carefully prepared
belt in which the losses are very small, we have a ready means of

determining the power delivered to that machine under any
conditions in which it may be working, up to the full load that

the rated motor can deliver. Another useful form of prime mover
consists in a motor of any description which is either wholly carried

on a cradle or one in which the field magnets are hung on ball

bearings on the shaft. In such a case the reaction between the

armature and the rest of the motor produces a couple which tilts

up the frame about the axis of rotation. By means of weights the

original configuration can be restored, and if these weights and
the perpendicular distance at which they are hung from the

motor's shaft are known, it is evident that this gives the couple
that is being supplied to the belt. If the energy loss incident

to bending the belt round the pulley is negligible, this couple
must be equal to that which the machine, under test, is receiving.
Hence if the speed of the latter be measured, the power given to

it is known. This method is in some respects better than the use

of a rated motor.

No load test and short circuit test. Such a known prime
mover being available, let the machine be excited to its ordinary
amount so as to give the full pressure, the power given will then
consist of the value of Wr at no load. As a first approximation
this may be taken as being very nearly constant over the range of

operation of the machine and hence this value of Wr may be used
in the determination of the efficiency. Now short circuit the

armature through a low resistance ammeter and adjust the

exciting current till any desired current is flowing up to the

largest at which the test has to be made. The losses supplied by
the rated motor are two in number, that due to the current
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passing in the armature, or W
,
and a certain amount of core loss.

But the excitation necessary to send full load current through the
armature on short circuit is small compared with that ordinarily

employed at full pressure, and hence this test can be taken
as approximately giving the value of W corresponding to the
current indicated by the ammeter in the armature circuit. It

follows that these two tests, together with a knowledge of the
excitation current and the field resistance, give enough data for

a close approximation to the efficiency of the machine to be
found.

Combined test. If two similar machines are available a test

similar to the combined transformer test can be made. The two
armatures should be rigidly connected together, and in so doing
it is best to give a small angle of phase difference between the two.
The effect of this is evidently to give a resultant E.M.F. due to the
two armatures, when equally excited, which is nearly in quadrature
with either (see Fig. 219), and since the circuit of the two
armatures is very inductive, the current will again lag nearly 90
behind this current and will thus be roughly in phase with the

pressure due to either. The circulating power is measured by
a wattmeter, W, as shown in Fig. 107, and this condition is, as we
have seen, favourable to the accuracy of indication of the same.

Fig. 107.

The initial phase angle must be fairly small to prevent the mini-
mum difference of E.M.F. which occurs for equality of the machines'
E.M.F.s being too large. By regulating the excitation of one of the
machines the load can be adjusted to the desired full amount.
The two coupled machines are driven as in the last case by the
rated motor from which the loss of power is found. Let the

power circulating between the machines be W as shown by the
wattmeter and the power lost be WL ,

as shown by the ammeter
and voltmeter V and A after deduction of the internal loss on the

motor, and let it further be assumed that half the lost power goes to
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each machine, and that their efficiencies, 77, are the same, which

will be very nearly true for machines of fair size. The generator
W ( W \

then absorbs W + ^ watts and therefore produces 77 ( W H ^ )

W
watts. The motor delivers W --~ watts and consequently

absorbs -

which leads to

This test gives more nearly the losses that are incident to full load

conditions than does the last one.

It would of course be possible to make the test even more
similar to the ordinary direct current one by supplying the power
by means of alternating currents, in which case the machines
would act as

"
synchronous

"
motors, and the lost power, WL ,

would
be measured directly by a wattmeter in the supply circuit.

Deceleration tests. The following method enables the actual

losses to be found and the separation between the hysteretic and

eddy current parts of the no load loss to be effected, the frictional

couple having been previously found. Let the armature of the

machine be permitted to slow down to rest from its normal speed ;

if P denote the retarding torque at any instant due to any loss

that is occurring in the armature, and if &> be its angular velocity

at that instant we have the relation P = I . -j- ,
where / is the

at

moment of inertia of the armature, etc. If W denote the rate of

working at that instant we further have

j-
day

' CO
~dt'

Let the curve in Fig. 108 give the relation between the speed
or angular velocity and time for the machine slowing to rest under
the given circumstances, then if the normal at any point be drawn
and if N denote the length of the subnormal MN at that point

P we have also N= o> -7- ,
and thus we can write W = I . N. It

follows that the loss at any speed can be found if the above curve

and the value of I are found, by drawing the subnormal at the

points corresponding to the required speeds. The curve can be
determined as follows. Let the machine be driven by a motor as
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before, and at a given moment let the driving power be cut off, the

excitation being kept constant. Take the time occupied in falling
to any known speed as shown by a tachometer driven by the

machine. If this is repeated for many different final speeds down
to the time taken to come to rest, the curve required can readily
be found. It remains to measure the value of the constant I . In

N Time

Fig. 108.

general the form of the armature is too complex to allow this

being calculated from the drawings, but it can be found as follows.

Let the rated motor be employed to determine accurately the

power W required to drive the machine steadily at the given
excitation, and let the subnormal at that point be measured and
have the length N^. Then evidently we have Wl I N1 ,

which

gives the value of the constant I .

Since the excitation is fixed the total loss in this case can be
written in the form W = a&> + 6&>

2
,
where a includes the friction

and hysteretic loss and b the eddy current one, and hence a set of

observations of the corresponding speed, o>, and loss, W, will

enable the values of a and 6 to be found, and the separation of

the two categories of loss can be carried out. For since the

corresponding values of W and o> have been found, for each value

, W
of the latter we can determine the value of

,
and if a curve be

W
drawn connecting the quantity with w it will have the equation

W = a + bo)
;
thus the intercept on the axis gives the value of

a and the slope of the curve the value of b.

The following modification of the method (due to Dr Sumpner)

enables the value of -y- to be found with great accuracy and hence
(lit

does not involve the determination of the full deceleration curve.

It requires the use of the driving motor (which in cases where an
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exciter is attached to the dynamo, may be that machine), as

an indirect method of measuring the speed. Let the motor be

constantly excited as shown in Fig. 109 ;
then if E is the E.M.F. it is

producing, this E.M.F. will be proportional to the speed or we shall

Fig. 109.

have the relation b . E = co. Let the pressure between the mains
that are providing the motive power be V, and let a voltmeter of

low range be placed across the terminals of a switch by which the

current can be cut off from the motor's armature. If v be the

reading of this instrument we evidently have v = V E and thus
dv dE , .

,
. , da) , dv .

we also have -j-
= -7- ,

which leads to -j- = 6 . -j- . Since the volt-
at at at at

meter is one of short range a large deflection will be produced by
but a small change of speed. When the full deflection has been
attained the switch must be at once closed to speed up the machine

again. Hence if the normal speed and pressure at no load of

the motor are found, this gives the value of 6, and if in addition

the time dt taken for the small alteration of pressure dv be

measured, we have a close approximation to the value of 6 . -=- and

hence to that of -=- . In what follows it will be assumed that the
dt

angular acceleration or retardation is measured in this manner.

The torque at normal excitation can be found as follows with

the above method of measurement. Let the deceleration under

these conditions be found and let it be denoted by (-?: )
>
we have

the relation P = I
(
-=-

)
. Then by means of a brake put over the

V rf*/i

pulley of the machine, or in any other suitable manner, let an
additional retarding couple of the known amount P be applied and

again determine the angular deceleration. We then have

- T (
dw

\- J
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Hence the value of I can be eliminated and that of P found, from

which the loss at normal speed can at once be determined. In

a certain small machine it was found that at 660 R.P.M. the driving

motor, which was directly attached, gave an E.M.F. of 100 volts.

Hence the value of u> is 69'5 and that of b is 0*695. The mean of

several tests gave 3 seconds as the time for the auxiliary voltmeter

to read 10 volts, hence the value of -j- is -=- and that of
( -y- )

is
at o \dt/i

2'32. A band brake giving a torque of 3'26 foot-pound units was

put on the machine and then it was found that it took 1'6 seconds

for the same change of pressure, giving as the value of
( -j-

)

the
\dt / 2

amount 4'33. We then have P = 2'32 1 and P + 3'26 = 4'33 . 1
which leads to P = 3

-l

76 foot-pound units. This is nearly the value

of the no load torque, and since the normal speed was 11 R.P.S. the

rate of loss of energy is 3*76 X 69*5 = 260 foot-pounds per second or

352 watts.

The application of the extra retarding torque can be made by
permitting the machine to supply a current to a non-inductive

resistance. For the purpose of this method it is best to slightly

modify the expression used. Let denote the normal pressure

produced by the alternate current armature, at constant excitation

this will be nearly proportional to the speed, and we can conse-

quently write aS = &>. But we have P = I -=- and hence
cut

PCD = 7 ft)

-j-
. But as before Pay is the loss of power that has to

be found. It can be considered as equivalent to a current <@

which is in phase with the pressure of the machine, and hence
we have

da>

or on substituting for &> we get

The value of -7- can be found as in the last case. First let
dt

the machine be allowed to drop in speed the desired amount when
the armature is on open circuit and let the deceleration be found
as before, we have

Again, let it decelerate, but let it be delivering a known current
to a non-inductive resistance, we must then have
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From these equations the quantity al can be eliminated and hence
the value of^ found, which immediately gives the no load loss in

the form & <& .

The accompanying core loss in the motor has been neglected
in each case

;
in general it would be small compared with that in

the machine, but if necessary the proper correction can readily be

applied.



CHAPTER XL

POLYPHASE E.M.F.S AND CURRENTS.

Two-phase dynamos. In the monophase dynamo we saw
that it was not usual to utilize all the available space on the

armature core for winding coils, and thus it is possible to place a

second set, or even two other sets, of coils on the same armature
core. In the former case the second set of coils could be wound
with their centres midway between the original set as shown in

Fig. 110, where the coils marked A are the original ones and those

Fig. 110.

marked B are the new ones. It is evident that in such a case the
E.M.F. generated in the set of coils A will be so related in time to

that in the set B that the maximum E.M.F. in A is produced at

the instant the E.M.F. in B is zero, or the E.M.F.S in the two armatures
are in quadrature as regards phase ;

such a machine is said to be
a two-phase dynamo.

As in the ordinary alternator we may have a winding with as

many coils in each set as there are poles, such as the one in

Fig. 110, or we may have a hemitropic form with fewer coils

than poles, as shown in Fig. Ill
;

certain relations must be

H [

J 1>
^ }

,
-
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in various ways with concentrated or distributed windings
and with series or parallel arrangements as in the monophase
machine. Fig. 110 would represent a simple case of series arrange-
ment, and in this case the two armatures are quite distinct from

one another, and the two ends of each set of windings are

attached to a pair of slip rings in the same manner as the single

winding of the monophase dynamo. In Fig. 112 is shown a form

of completely continuous winding, which here takes the form of

Fig. 112.

an ordinary Gramme ring: if collecting points be fixed at distances

apart equal to half the pitch of the poles, and if the alternate

points be attached to slip rings, it is evident that the winding
forms a completely distributed one with parallel arrangement of

the circuits, there being as many parallel circuits as there are

pairs of poles. If points midway between the first set of points be

similarly joined to two rings, they will give a second winding in

which the flux is zero when the flux through the first set is a

maximum, and will thus form an armature in which the E.M.F. is in

quadrature with that in the first one. In this case it is evident

that the armatures cannot be treated as independent. Such a
form of winding will be obtained if the armature of an ordinary
direct current multipolar dynamo has the appropriate points

joined up to four rings. A machine of this form is called a Rotary
Converter, and will be treated of more fully later on. If the

direct current winding be not a simple Gramme winding but some
one of the many forms of drum windings, it is still possible to

find points in the armature that very approximately fulfil the

required conditions
;
the arrangement of such windings is beyond

the intended scope of this book
;
the student is referred to Prof.

S. P. Thompson's work on Polyphase Currents for full details.

Vector representation. We must now see how the pressures
and currents in these cases can be represented by vectors. It is

usual for the E.M.F.S produced by the two armatures to have the
same virtual value, and we will take this to be the case. Draw
the vector OA, Fig. 113, to represent the maximum E.M.F. in A's

armature, then if the E.M.F. be simple harmonic the projection of
this line on any line rotating at a number of revolutions per

L. 10
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second equal to the periodicity will represent the instantaneous

E.M.F. of the armature A. Similarly, if 0^ be any equal line at

right angles to OA its projections on the same line will give the

corresponding value of the E.M.F. of B. In the case where the two
armatures are quite independent there is no connection between

0, > B

Fig. 113. Fig. 114.

A and B, and hence we cannot say what is the pressure between
the other ends of A and B, that is between and 0' or A and B.

Now let one end of each set of coils be connected. Then the points
and Ol become the same point and Fig. 114 gives the vector

representation of this case. The question arises, What is the

vector representing the pressure between the free ends of A and B ?

It should be noted that the pressure between A and B is not the

sum of the E.M.F.s in the armatures but the difference, and thus

the vector representing it will be found by reversing one vector

and combining this with the other, or more simply and generally by
joining A to B. The direction in which this vector is to be

reckoned depends on which of the points A or B is taken as the

point of reference. Hence with sinusoidal E.M.F.S the pressure
between the free ends of the coupled armatures will be \/2 times

the E.M.F. in either, and under these circumstances the same
relation will apply to the virtual pressure between the mains

joined respectively to the points corresponding to A, B and 0.

Balance. If the two armatures be delivering current to

given circuits it may be the case that the currents and phase

angles are different for the two. We will assume that this is not

so, but that the currents in the two circuits and the phase angles
between the pressures and the currents are the same for both, in

which case it is said that the machine is working on a balanced
load. Let XD, Fig. 115, be the vector for the current from As
armature and XE that for the B's. Since the two currents have
the same lead or lag, X, on their respective pressures these two
vectors are also at right angles. With the common junction

existing it is evident that the current flowing through the main
attached to it will be equal to the sum of the currents in the other

two mains, or will be given by the vector XU. Its value with
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sinusoidal currents will be \/2 times either of the components, and
its phase angle with the pressure between the ends of the outside

mains will be (90+X). When the load is non-inductive, the

current in the common main is in quadrature with the pressure

existing between the outside mains.

Neutral point. As an example of another possible arrange-
ment of the vectors representing the E.M.F.S take the form of

winding shown in Fig. 112. The vectors giving respectively
the potential differences between the two armatures must be

a

Bi

Fig. 116.

of the same length and at right angles, as in the last case
;

let them be represented by AA l and BBl in Fig. 116. Here
there is of necessity another condition which must be fulfilled,

namely that the four potential differences between AB1} B1A l)

A
1
B and BA must from symmetry be all equal in amount.

It follows that the relative position of the vectors for AA^ and
BBl must be such that they cross at right angles at the centre,
so that the complete representation of this case is the square
shown. In this case if the potential difference across any
opposite pairs of mains connected to the rings is

, that across

any adjacent pair is <f/\/2. The centre of the square is a point of

symmetry and is called the neutral point of the system of vectors,
the corresponding point in the armature, whether really existent or

not, being the neutral point in the armature's winding. The
position of such a point is sometimes a very important matter to

bear in mind. In certain forms of distributed windings, such as

those derived from direct current drum windings, the number of

sections in the winding often does not permit of division into four

exactly equal parts. In such a case the vector square will be

slightly deformed, and its diagonals will no longer be at right
angles.

Three-phase dynamo. In the case where the space on
the armature is used to wind three sets of wires instead of two,
the sets of coils are in general so arranged that the phase difference

102
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between the three equal E.M.F.s produced is 120, that is, if one be

represented by e E sinpt the other two will be given by

e = E sin (pt + JTT) and e = E sin (pt + |TT).

This will result in the trace of the E.M.F.S, when sinusoidal, being
as shown in Fig. 11*7. Take the case of an armature winding as

Fig. 117.

shown in Fig. 118. The distance from one north pole to the next

corresponds to 360 electrical degrees, hence if two other sets of

coils B and C are wound as shown in addition to the original

Fig. 118.

set, A, the E.M.F.s generated in them will differ by the required

angular amount. The corresponding case with the full number of

armature coils is given in Fig. 119. Just as before, the several coils

can be wound in either concentrated or distributed manner and

Fig. 119.

in series or parallel. The phase relation will be fulfilled in the case

of a completely distributed winding, such as that of a direct

current armature, by supplying rings attached to three points at

120 instead of the four points and rings of the two-phase case.
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The representation of this case when the armatures are quite
distinct will be by means of three equal vectors at 120 as shown
in Fig. 120 at A, B and C.

Star connection. There are two methods open to us for

diminishing the mains required. If the terminals of armature A
be called, as shown in Fig. 121, 1 and 2, those of B, 3 and 4, and
those of C, 5 and 6, we can connect up 1, 3 and 5 into a common

<{*

Fig. 120. Fig. 121.

point, and in this case the connection is called the T or star

connection. The vector representation of the pressures will then
be as at Fig. 122, where the three vectors are OA, OB and 00. As
in the two-phase case, the vectors giving the pressures existing
between adjacent mains will be AB, BC and CA, and for the case

where the initial E.M.F.S are sinusoidal, each of these is evidently
V3 times the pressure between the armature terminals

;
is the

neutral point of the three armatures. If we take the external

Fig. 122.

B

Fig. 123. Fig. 124.

circuits as non-inductive and equally loaded,the vectors representing
the three currents will necessarily be parallel to OA, OB and 00,

and, since there can be no current flowing to or from the neutral

point 0, these vectors must be arranged in a triangle as at Fig. 123,

with the sides parallel to the above vectors. It follows that in
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this case the pressure between any two mains is at right angles to

the current in the opposite main. For inductive loads the current

triangle must be turned in the proper direction through the angle
of lead or lag, X, as shown in Fig. 124, the phase difference between

any main current and the pressure between the opposite pair of

mains is in that case (90 + X) : it may also be noted that the

current in any main, such as A, Fig. 121, has the phase angle

(30 +X) relative to the pressure between that main and one

adjacent main, and the phase angle (30 X) relative to the

pressure between that main and the other adjacent one.

Mesh connection. Another method of combination of the

six ends of the armatures would be to take them two and two in

pairs ;
this is called the A or mesh connection. In this the

vector representation of the pressures is simply a triangle as in

Fig. 125. As regards the currents it must be borne in mind that

if we call a, b and c the currents in the three armatures and

denote those in the mains by ab, be and ca, the current ab must
not be looked on as the resultant of a and b but as being that

Fig. 125. Fig. 126.

current which, when combined with a, will leave b
;

that is, b is

the resultant of a and ab and vice versa. Thus if the triangle PRQ
(Fig. 126) be drawn for the case where the load is non-inductive,
with its sides each equal to the armature currents and parallel to
the pressure vectors, and if the three lines PS, QT and EU be
drawn bisecting the angles of this triangle and of length \/3 times
the length of those sides, it will be seen from the construction
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that these lines must be the vectors representing the several line

currents. Thus as before the resultant current in a main is, with
non-inductive loads, at right angles to the pressure between the

opposite mains, but the current in the mains is \/3 times that

in the armatures, the pressures between the mains being the

same as those produced by the armatures. With a phase angle,
X, the vector figure of the currents must be turned through
that angle, as in the star case. The above numerical re-

lations are evidently only true for the case where the pressures
and currents are simple harmonic quantities, and for other forms
of curves these relations will not necessarily hold good. For

example, if in the mesh connection the third harmonic be present
in the current curve it is evident that since the three curves

differ in phase as regards their fundamentals by 120, this harmonic
will just be in phase in each of the armatures and will hence

merely cause a current to circulate locally round the mesh. Such

complex curves cannot be properly represented by the relations we
have derived. In practice, however, the difference is not great
between the results of a vectorial treatment and the results of

experiment.



CHAPTER XII.

MEASUREMENT OF POLYPHASE POWER.

Balanced loads. We must now consider the question of

power measurements in a polyphase system. With two phases
and a balanced load it is only necessary to connect a wattmeter in

one of the circuits in the ordinary way and twice the reading will

give the power transmitted. If the circuits are unbalanced two
wattmeters would be required, one in each circuit. These can be

mechanically connected, that is to say, the two shunt coils can be
fixed to the same spindle and pointer, and if the two instruments
have been so arranged that their calibrations are the same, the

total power can be read at one observation. In the case of a

three-phase balanced load, if be the pressure at the terminals of

any one of the three armatures and if Vj> be the current it is

delivering, the total power delivered will be W= 3 . S^ cos X,

where X is the phase angle between the pressure and current.

1 0'

Fig. 127.

Now it is not always possible to connect up a wattmeter with the
shunt coil across one armature and the series coil in the armature

circuit, the series coil must be in one of the mains and the
shunt one across a pair of mains, since the neutral point is not

usually accessible. The difficulty can be overcome by the use
of a neutral point resistance as shown in Fig. 127. Three equal
non-inductive resistances are arranged as a star across the supply
mains, and the shunt circuit is connected to the common point, le
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The whole resistance of the shunt, the series resistance and one

of the branches of the auxiliary star must be made of the right
amount for the wattmeter's shunt circuit. In this case with

balanced load it is evident, from symmetry, that the points and
Ol must be at the same pressure and thus the wattmeter will

read one-third of the output of the dynamo.
A method based on the assumption of sine variation of currents

or pressures, that can be applied to the case of balanced loads, is

the following. Consider the mesh connection for a balanced load,

the pressure between the mains is due to one of the armatures
and is therefore

,
while the current in the main has a value V3

times that in either armature. Again, a reference to p. 150 will

show that the angles between the current in any main and the

pressures between that and the adjacent mains are respectively

(30
-
X) and (30 + X). Let a wattmeter (Fig. 128) be connected

with its series coil in one main, and let the shunt be first

O

Q

Fig. 128.

connected to the point P and then to the point Q. In the first

case its reading will measure the quantity V3 . *$ . cos (30 X)
and in the second the quantity \/3 . S . *$ . cos (30 4- X). The sum
of its readings will then give V3 . g<@ . (cos (30 + X) + cos(30

-
X)}

which reduces to V3 . S. <@ . (2 cos 30 . cos X) or 3 . g<@ . cos X, that

is to say, the power that the load is taking. The addition of the

two readings can be made automatically if the points P and Q
are both joined to the shunt of the wattmeter by means of

equal high resistances, but the constant* of the instrument must
be taken with only one of them in circuit. It is evident that

exactly similar considerations will apply to a load arranged in a
star fashion. It must be remembered that this method not only
involves the assumption that the loads are balanced, but also that

the pressures or currents vary as sines.

The following method of expressing the power in a three-

phase system is sometimes employed. Consider the case of a
star connection with balanced load, and let the power have been
measured as described. If W denote this power and and ^ the

currents and pressure due to each of the similarly loaded armatures,
the total power will be given by the relation W 3 . S^ . cos X.
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Now let Sm denote the pressure existing across any two of the

mains, which is in general the only pressure that can be readily

measured, then on the assumption of sinusoidal pressures we
know that the numerical value of this virtual pressure is \/3 times

that of the pressure contributed by each armature, hence we
can write m = *J%. or W= \/3. ^.^.cosX. In using this ex-

pression, however, care must be exercised. It does not denote

that the power has been measured by joining up a wattmeter
with its series coil in one main of the star and the shunt
across the adjacent one, all it denotes is that we have separately
measured the power taken by the whole apparatus, the current in

the main, and the pressure between two mains, and for convenience

write the relation between the three in this way.

Similarly in the case of the mesh connection with balanced

power, if
, <$ and W have the same meanings as before, we

can measure W and but not ^; all we can do is to measure
the current in one of the mains attached to a junction of the rnesh.

If this be called ^m ,
on the sinusoidal assumption we again have

<^ = V3 <$m and thus arrive at W = V3 . &@ . cos X, where the three

quantities W, and <$ are directly measured. The same point
arises as before, that is, the current ^ must be taken to denote

solely its virtual value and it must not be taken to connote its

phase relationships.

Unbalanced load. It can be shown as follows that by
means of two wattmeters we can measure the power of a three-

phase dynamo whether the load be balanced or not. Consider

Fig. 129.

the star winding shown in Fig. 129 and let the two wattmeters be
connected as indicated. Let ea ,

eb and ec be the pressures existing
at any instant between the neutral point and the ends of the three

armatures, and let ca ,
cb and cc be the corresponding currents in

those armatures. The instantaneous power being delivered will be
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and the mean power over the period will be

1 CTW=- I (ea ca + eb cb + ec cc)dt

where r is the periodic time. But in the star case we have

ca + Cb + cc = 0,

and thus ec (ca + cb + cc)
= 0.

Hence by subtracting this expression from that under the integral

1 fT

we get W= / ca (ea ec) + cb (eb ec) dt.
T Jo

But from the method in which the two wattmeters are connected

it is seen that the right hand of this expression is what the two
instruments measure, and thus two wattmeters connected as

shown will measure the power under any conditions of the three

circuits. The mesh case is left to the student to prove. It will

be seen that for some conditions of phase angle in the circuits one

of the wattmeters may register negative power; to avoid any
difficulty it is desirable to combine the two spindles mechanically
as mentioned in the two-phase case.

Constancy of output with balanced load. It may be

noted that the polyphase dynamo working on a balanced load has

one advantage over the monophase one in the constancy of the

rate of production of energy. In the latter, even in the case of

unit power factor, the delivery of power falls to zero twice per
alternation, and with a phase angle is negative for two portions of

each alternation. Take the case of a two-phase machine delivering

power to a balanced load. If the E.M.F. of one armature be

ea=Esmpt and the current be ca = C.sin (pt \) the corre-

sponding quantities for the other will be

eb = E cospt and cb = C . cos (pt X).

Hence the instantaneous power will be

w = EC {sin pt . sin (pt X) + cospt . cos (pt X)},

which reduces to w = S.fflcos X, or a constant quantity. Hence in

the two-phase machine with balanced load the flow of power from
it is constant

;
it can readily be shown that the same is true for

the three-phase machine.



CHAPTER XIII.

POLYPHASE TRANSFORMATIONS.

TRANSFORMATION WITH UNALTERED PHASES.

As in the case of monophase currents, transformers can be used

for the purpose of changing the pressure from that of supply to

any other desired value. Owing to the greater number of circuits

there is much variety possible in the different connections. In the

case of the two-phase circuit all that is necessary is to provide
each phase with a transformer of the required ratio. With three-

phase currents many methods of connection are possible. In what
follows we will use the letter $P to denote the virtual pressure
between any pair of mains connected to the primary, and y for

the pressure between two adjacent mains in the secondary. The

symbol p will be used for the ratio of transformation in the

different transformers used
;

it will mean the ratio between the

secondary pressure in a coil homologous to a similarly situated

primary coil, and the pressure in that primary coil.

When the transformation is star to star, we have the arrange-
ment shown in Fig. 130, where for convenience the primary and

Fig. 130.
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secondary coils are shown separately, though of course corre-

sponding coils are in fact wound on the same iron core. It is

evident that in this case the ratio #7<f^ is merely p, since the

connections of primary and secondary are the same in form. The
vector diagrams are shown below, the lengths of the lines in the

same can be taken as representing the corresponding virtual

values of the pressures.

If the transformation be mesh to mesh, as in Fig. 131, similar

considerations evidently apply, and the ratio ^/^ is again p.

In this case it will be seen that if one of the transformers be

Fig. 131.

suppressed, as shown to the right-hand side, no difference is

produced in the pressure triangles. Of course the currents

flowing to the junctions are somewhat altered since the magnetising
currents of the transformers now come down only two mains, and
hence balance will be slightly disturbed, but the supply of energy

Fig. 132.
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from the secondaries will not be interfered with. This is some-
times of importance, as such a mesh arrangement will permit the

temporary cutting out of one of the transformers should circum-

stances render it necessary.

But it is not essential that both primary and secondary circuits

should have the same connections, the former may be connected as

a star, and the latter as a mesh as in Fig. 132. An inspection of

the volt diagram below will show that the ratio ^/J
5 is now

p/V3, for the ratio of & to ^ is now p while that of & to ^
is V3.

Similarly if the primaries be in mesh and the secondaries

in star the state of affairs is shown in Fig. 133. Here it is readily
seen that #7^ is p . V3.

Fig. 133.

Two- and three-phase transformation. But not only can

we transform from one form of three-phase connection to another,
but also from three-phase to two-phase. Consider two primaries
connected as shown in Fig. 134, and let the turns in the primary db

be V3/2 times those in ac while the point d is the centre of the

winding ac. Let two equal secondaries be provided to these

primaries as shown, and let three-phase currents be supplied to the

primaries, we shall see that the secondaries will have two-phase
relation between the pressures. Let the equilateral triangle ABC
be drawn and let BD be the perpendicular from B on AC. Then
BD is V3/2 of any of the sides, and the three lines forming the

sides are at 120
;
hence this figure will represent the state of

pressures in the primaries of the two transformers. It follows

that the pressures induced in the two secondaries will have a phase
relation corresponding to that of the lines AC and BD, that is,

they are in quadrature. If the two secondaries have such a
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number of turns in them as to produce equal pressures, they will

form an ordinary two-phase system. The ratio of #7<^ will

evidently be that corresponding to the primary ac and its related

secondary. The other secondary will have the same number
of turns, but the primary will need the proper number of turns

mentioned above.

-Xooiro o o a op

y>

It is evident that if two-phase current be fed into such a pair
of transformers in the reverse way, three-phase currents will be
delivered from the other terminals.

The above method necessitates a special pair of transformers
;

should it be necessary temporarily to use transformers with more

ordinary ratios of transformation, the following is an approximate
way of obtaining two-phase current from a three-phase supply.
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Let the primaries of the transformers be connected in mesh on the

mains, and let two of the secondaries be joined in the ordinary
manner, but divide the winding of the other in its mid-point, and
connect the ends in the opposite way to that ordinarily used,
as shown in Fig. 135. The volt diagram for the primary will be as

shown, that for the secondary will have two of the vectors for the

ordinarily connected secondaries drawn in as usual, but the vectors

for the others will consist of two equal halves drawn opposite to

the normal direction. It follows that the volt diagram for the

secondaries will be as on the right. Consider that figure, and
note that in the triangle CAE the side CE is equal to the line

AD while the side AE is \/3/2 of that line, hence the tangent of the

angle ACE is \/3/2, from which it follows that that angle is about

40|, and hence the angle CAB is about 99. Thus the pressures

represented byAB and AC are approximately in quadrature. The
ratio of &I&* is found as follows; the ratio of AD to ^is p, while

it will be seen that ^is V7/2 times AD, hence <97<^is V7/2 . p.

Transformation to six or more phases. We will now
consider how it is possible to obtain from a three- or two-phase

system another system which has six or more phases. Such a case

will arise when we consider the connection of rotory converters

to a polyphase system, but for the present purpose the system of

loads to which such a transformer is attached may be taken as

consisting simply of ordinary resistances connected on to the

Fig. 136.

several secondary terminals. For the present purpose such

circuits should be taken as being similar to one another. Let P,

Fig. 136, be a star connected primary, and let two similar secondaries

S, Slt be provided to each transformer; let the first set of these be

connected in a star, as is also the second set, but let the opposite
set of ends be connected to the star centre in the latter case, and
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then let the two stars' centres be joined, as shown in the figure.
The representation of the pressures existent in the secondaries

thus connected is evidently given by the hexagon shown. Thus
from the given three-phase primary we have derived a six-phase

secondary. The ratio &Jf will be given by />/\/3, for & is

evidently equal to the pressure at the terminals of any of the

secondary circuits, and hence ^/^ is p, also ^is V3^i, hence the
result follows.

The primary could have equally well been connected in the
mesh fashion preserving the double star for the secondaries, this

would only produce a different value for 9*jP.

The same result can be obtained with a double mesh for the

secondary as shown in Fig. 137. The primary being assumed
meshed, it is provided with two secondary windings, each being
also meshed, but the ends of the second winding are reversed as

Fig. 137.

shown. If the load to which such a set of secondaries is joined be
such as to require symmetry in each of six circuits, the vector

representation is as given. It will be noted that while the star

case of necessity produces a definite neutral point, in this case the

neutral is fictitious and depends on the form of the load. The
ratio &\gP is p/\/3, for we have ^ is \/3 times 9* and also #J is

p times ^. As in the last case a star connected primary could

have been employed, with alteration of the ratio &/&.

As an example of the flexibility of a polyphase system of

transformation we will now see how a twelve-phase winding can be
derived from a two-phase one. Let the primaiy be connected to

a two-phase set of mains, as in Fig. 138, and let each transformer

be provided with five secondaries forming sets Si and $2 ;
let the

turns in the secondary Dd of Si be # and wind the others as

follows : Cc and Ff with V3/2 . x turns and Bb and Gg with x/2
turns. Let the secondaries of S2 be similarly wound as shown at

Aa, etc. Consider the figure below the secondaries and let them
be connected together as there indicated by the corresponding

L. 11
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letters, the whole set being connected at the twelve points on the

circle to an appropriate load as in the double mesh case just
considered. The length of li or Dd will be proportional to x ; it

will be noted that each of the sides of the figure subtends an

angle of 30 at the centre, from which it will be readily seen, by
following the dotted lines, that the lines joining GE to Be, Og to

ob, Ca to uc, and FA to Uf are each V3/2 times H
;
also the lines

joining GE to Og, Be to ob, FA to Ca, and Uf to uc are each one
half of li. Thus the lines fulfil the relations of magnitude and

phase relation demanded by the windings of the secondaries, and
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another in those limbs, the section of iron employed in such parts
of a transformer where the fluxes add can be of less cross section

than when separate ones are used; this results in a saving of

weight and space and some diminution of core loss. In cases

where a breakdown of the apparatus connection of the trans-

formers necessarily results in their being put out of operation,
such a construction is desirable, but in such cases as the double

mesh, where two transformers can carry the load when one of the

three is out of action, the common magnetic circuit cannot be
used.

112



CHAPTER XIV.

THE EOTATING FIELD OR INDUCTION MOTOR,

The rotating field. We will now consider the most important
property possessed by certain polyphase circuits, which, indeed, is

one of the chief factors that has determined their use. Consider
the case shown in Fig. 139 where two similar symmetrical coils A
and B are placed with their axes at right angles and their centres

coincident, and let two equal alternating currents differing by 90

B

B

Fig. 139.

in phase be flowing in those coils. A will produce an alternating

magnetic flux at the centre of the coil, in the direction of the arrow

a, and if the current flowing be simple harmonic so will be this field.

In the same way the coil B will produce a simple harmonic field in

the direction of the arrow 6. But these two equal fields differ in

angular position by 90 ;
hence the resultant field produced must

be representable by the addition of two equal simple harmonic
motions at right angles in space and in quadrature in time. But
we know that the result of such a combination is a uniformly

rotating quantity which has a constant magnitude of the same
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value as the maximum of the components, and rotates once for

each alternation. This follows from the fact that a uniformly
rotating motion is equivalent to two equal simple harmonic ones

along axes at right angles differing in phase by 90.

For let OP, Fig. 140, be a line of constant length, A, rotating with
constant angular velocity, p, about

;
let Ox and Oy be the usual

perpendicular axes, and let the position of the point, P, be specified

Fig. 140.

by the angle reckoned from Ox. Projecting OP on the axes it

is seen that the vector OP is equivalent to the two vectors OA
and OB. But we have OA = OP. cos 0, and OB = OP. sin 0:

further 6pt, thus

OA = A sinpt, OB = A . cospt = A . sin (pt 5- )
.

V A /

Thus the uniform circular motion of OP is equivalent to two

simple harmonic motions along perpendicular axes, of the same

amplitude as the length of the rotating quantity but differing in

phase by 90, that is, in quadrature both in space and time;
hence the converse holds true.

The magnetic field at the centre of the coils will thus be a

rotating one of constant strength. If the two fields are not at

right angles both in time and space, or if they are unequal in

magnitude, the field produced will in general be still a rotating one,
but instead of being of constant strength it will vary in strength

during the revolution and will in fact be an elliptical harmonic
field

;
when the time phase-angle is zero, that is, the two currents

are cophased in time, the field is of course stationary but alternating.

A similar result can be shown to occur if instead of two equal
fields at right angles in time and space we have three such equal
fields at angles of 120 in time and space. Let the coils be

disposed as shown in Fig. 141 and let three currents be flowing of
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magnitudes such as to produce a field of maximum strength B at

the centre of either of the three coils. Considering the field of A

B

as the standard of reference and writing it a= B sinpt, the fields

of B and C will be

Cf

=Bsin(^ + 120), and c = B sin
( pt + 240).

Substituting for the sines and cosines of the constant angles these

become

C/q \

J smpt cos pt\ ,

and
f /^ \

c = - B U sin^ +
-^

cos
ptj

.

Now take as standard directions for resolution that of the field a
and the perpendicular, and let x and y be the resolved components
of a, b and c on these lines : we have

#=a + c.cosl20 + c.cos240
,
and y = b. sin 120 + c. sin 240.

On substitution and reduction these expressions become :

x = fB sin pt and y = fB cospt.

Hence if Br be the resultant of the three vectors, and 6 be the

angle it makes with oy, we have

: tan# = -,
y

which gives =t, or

Thus the resultant field is one of constant strength, l times each

alternating field, rotating with an angular velocity equal to 27rw,

where n is the periodicity of the currents. It should be noted
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that the sign of the angular velocity is dependent on the order in

which the different alternating fields grow in strength.

Resulting torque. Let a small metal disc be pivoted- on an
axis which is perpendicular to this rotating flux, at the centre^of the

coils. The flux will cut this disc and hence currents will be produced
in it

;
between these currents and the flux there will be a reaction

resulting in a couple being produced tending to rotate the disc.

If there be any opposing couple acting on the disc, for example
one due to friction, it will evidently run at such a speed that the

couple produced by cutting the rotating field will be exactly equal
to this opposing couple ;

if the opposing couple, to whatever it be

due, is zero, the disc will run as fast as the field rotates.

The rotating field or induction motor. The above arrange-
ment constitutes a simple form of motor but it would produce only
a small couple since the flux in the air is necessarily small. If by
any means we can arrange that the different fluxes are produced
in an iron circuit, much larger couples would be attainable

;
the

following arrangement enables this to be done.

Let two sets of stampings be provided of the form shown in

Fig. 142, both inner and outer having holes or slots to carry wind-

ings, the inner set being all rigidly fixed to an axis, and capable of

rotation. Let the outer set be divided into four equal parts as

shown by the dotted lines and wind two opposite parts as shown

Fig. 142.

in the figure, where for simplicity only one set of windings is

indicated. If an alternating current be passed through this

winding it will produce an alternating flux as shown by the lines

crossing the small air gap that is left between the two sets of

stampings. In the same way a second set of windings placed in

the holes that are in the other part of the circumference will
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produce a flux distribution at right angles to the above. Let the

two currents supplied be in quadrature in time as shown by the

curves A and B in Fig. 143, and consider the eight successive points
in one period indicated thereon. The distributions of current in

the two sets of windings for these different points are roughly
shown in the eight circles below, the dots and crosses indicating
in the usual manner the direction of the currents, and the number
of them affording an indication of the current strength in

Fig. 143.

the coils. The direction of the flux produced by the belts of

current will be as indicated in each case by the central arrow, and
it will be seen that this arrow executes one rotation for one

complete alternation of the currents. Thus such an arrangement
would produce a rotating belt of flux the angular velocity of which
is such that the number of revolutions per second made by it is

equal to the periodicity of the currents flowing in the windings.

Slip and torque. Up to the present nothing has been said

as to the use of the holes left in the interior set of discs. Let each
of these have threaded through it a bar of copper, and let the two
sets of ends of these bars be carefully soldered to two complete
rings, then sets of closed electric circuits are formed in which

pressures, and consequently currents, can be produced by any
changing flux. Thus the rotating field which will rush round past
these rods will induce currents in them and hence a torque will be

produced by the reaction between the induced currents and the
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rotating field, tending to turn the interior set of stampings round.

The outer set of stampings is usually at rest, and hence the two
sets are respectively called the stator and rotor, that is, the

alternating currents are fed into the different phases of the stator

and the rotating field thereby produced tends to turn the rotor

round. If there was no opposition to the rotation of the latter it

is evident that, as in the case of the disc, it would run up to such

a speed that no couple was produced, in other words to such a

speed that the rods in the rotor had no currents in them and
did not cut the flux produced by the stator. This means
that it would run at the same angular velocity as the stator's

field or in synchronism therewith. If, on the other hand, there

be any couple acting on the rotor tending to oppose its motion,
the rotor would have to produce a couple equal to this and would
therefore have to cut the field of the stator, which means that it

would run more slowly than in synchronism ;
the greater the

couple required the greater would be the difference between the

angular velocity of the rotating field and that of the rotor. If H
be the angular velocity of the field and o> that of the rotor the

difference between them will be <r = II o>. The quantity <r is

often called the Slip of the rotor, and this slip would increase

with increased demand for torque.

Form of stator winding. In Fig. 142 the two phases there

considered are shown for convenience as being wound on distinct

parts of the stator
;
it must not be assumed that this is necessarily

the case in practice. The wires forming the two sets of windings
can be distributed in any desired symmetrical manner, for example,
each may occupy half the circumference instead of one quarter as

shown. All that is essential is that the fields produced by the

two should be the same for the same current, and that the space
relation should be one of quadrature. The effect of different forms

of such winding is solely to produce different shaped distributions

of flux in the air gap. For convenience in description and clearness

in the figures the simplest one is taken, but it must not be
assumed it is an ordinary form.

The rotating belt of flux. We see, then, that when a

couple is demanded from the rotor, in addition to the currents

flowing in the stator there will be currents in the conductors of

the rotor, and that the latter will rotate at a somewhat lower

velocity than the field does, the difference being just enough to

cause the currents induced in the rotor to be of the proper amount
to produce the required couple. The currents in the individual

windings of the stator and rotor must also in this case evidently
combine in effect so as to be equivalent to bands of currents which

may be looked on as rotating in the same way as the field does,

and in order to make the case possible of treatment by a graphical
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method it is necessary to idealize it in some manner so that the
different quantities can be represented by vectors.

The band of flux that is rotating will at any moment have
some specified distribution in the air gap and the simplest case to

take will be to assume that it is so distributed that we can repre-
sent its intensity by the ordinates of a sine curve. Thus if the

horizontal line (Fig. 144) be the circumference of the air gap we
may consider the flux at any moment to be given by the ordinates

Direction ofMotion of
the BeIt of Flux.

Fig. 144.

of the sine curve drawn there and if this sine curve be imagined
to be moving bodily with the velocity that the rotating field

possesses we shall have a simple representation of the state

of the rotating band. We must now see under what conditions
this state of things can be legitimately represented by a vector.

In Fig. 145 is indicated the air gap and its band of flux,

Fig. 145.

the thickness of the shaded area outside and inside the air gap
circle being intended to indicate the density of the field, and

being such as to correspond with the ordinates of Fig. 144.
Let the line OF be drawn from the centre to the point
where the maximum value of the field occurs, then if this line
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rotate with the field it can be taken to represent the whole
distribution of flux in the gap, its length being taken so as to

measure on some desired scale the maximum value, 4>, of the flux

passing across a strip in the air gap one centimetre in breadth.

The difference between this form of vector representation and our

old one must be noted. Here there is no line considered on which
this vector is projected ;

it must be looked on as a line of constant

length rotating with the angular velocity of the field, its position

pointing to the place where the flux is a maximum. It is possible,

then, to represent directed quantities which are distributed in

space according to a sinusoidal law provided their representative
vectors are drawn in accordance with the above conventions.

Composition of alternating fluxes. This rotating flux is

due to the fact that two stationary alternating fluxes are co-existing
at the same time in the stator with a phase difference of 90.
Consider the case of a two-phase stator, and assume that we

replace the actual flux distribution, which at any instant exists in

the air gap due to the action of one set of windings, by a sine

distribution as shown. If at the instant considered the latter

flux per centimetre breadth have a maximum value
<f> (Fig. 146),

the expression for the flux at any point P given by the angle 6

Equivalent S/ne
flux.pha.se A .

j

Circumference -2n

Equi valent Sine
fIUK, phase B.

Fig. 146.

reckoned from a fixed point in the stator and due solely to the

phase, A, will evidently be given by <f>
. sin 6. But this flux

is varying with the current flowing in the windings of A
and we can assume that it varies with time in a sinusoidal

manner also and thus the maximum is given by <f>
= 4> sin pt .

Hence the flux at any point P due to the phase A will be
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given by <1> sin pt . sin 6 at the angle 6 and the time t. The other

phase B is so wound that its flux attains its maximum at a point
one quarter further round the circumference and hence will be given
in space by the cosine curve shown below. The maximum attain-

able value of the flux will be the same as for phase A but will

not be attained till a quarter period after A, hence the field con-

tributed by B at the same point P will be given by <!> cos pt . cos 0.

The flux in the gap will then be given by the sum of these

or by 4> (sin pt . sin 9 + cos pt . cos 0). By ordinary reduction this

becomes <E>cos(# pt). It follows that the position of the

maximum flux is given by cos(# pt)
= l or 6pt=Q, that is

6=pt, or that the position of this maximum is defined by the

equation =p, hence, if H be the angular velocity of the field, we

have O =
p. Thus the maximum flux, with its accompanying

sinusoidal band of flux, will fulfil the required condition of rotating
with uniform velocity corresponding to the periodicity, unchanged
in shape, provided the assumed conditions are fulfilled, namely, the

stationary alternating fluxes that produce it must be sinusoidal in

space distribution in the air gap, and their maxima must
be^ equal

simple harmonics, both space and time differing by J period in

each.

It may be noted in passing that a similar proof can be given
for the three-phase winding. In this case the stationary flux due

to each stator winding will be severally given by the three expres-
sions

<E> sin 6 sin pt,

<& sin (0 + |TT) (sin^ + ITT),

and < sin (6 + 4 TT) (siupt + f TT).

The flux in the gap will be the sum of these. It is left to the

student to expand and add the above. It will be found on so

doing that each term contributes two terms to the sum, in each

case one of these terms is
-^-cos(# pt), and the other three will

cancel on addition, hence the rotating flux will have a maximum
value which is 1^ times either of the components, and rotates at a

number of revolutions per second equal to the periods per second

made by the impressed currents.

For the future consideration of the case we will take for simpli-

city the case of a two-phase stator, as it is evident that the state

of things can be represented by the same constructions in the

cases where the rotating flux, etc. is the same, to whatever form of

winding it may be due.

The maximum value of the flux, that is, <t>, is evidently

approximately equal to the maximum intensity of the induction in
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the gap multiplied by the length of the same measured parallel to

the axis of the stator.

The current bands. Ideal winding. The next point is

to consider the nature of the current bands that must exist in

order that this sine distribution of flux may be possible.

Since the rotating field has been assumed to have a sine

distribution in space it follows that the distribution of the current

band or bands to which its existence is due must follow the same
law. But in the windings of both rotor and stator the wires carrying
the currents forming the bands are arranged in such a manner
that the current at any instant is the same over the arc belonging

1
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the rotor, so that in neither case could we have a sine distribution

of current in space with the actual windings employed. It follows

that in order to make the case amenable to vector treatment we
must replace the actual windings by ideal windings which will

enable sine distributions of current to exist, but will at the same
time have the same electrical conditions and the same magnetic
effects as those actually employed.

This ideal winding can be taken to have the following form.

Let the actual winding of any phase of the stator be imagined
to be replaced by one made up of a very great number of

wires very close together, the number per centimetre of the

circumference of the stator being so arranged that they vary as

the ordinates of a sine curve round that phase. Then any current

flowing in the stator will very nearly produce a belt of current

which is of the desired sine form in space. In order that the

resistance of such a set of turns may correspond to that of the

actual winding it is evident that it must also be arranged that the

ideal winding has the same resistance for each centimetre run that

the actual winding has. Thus if the real winding has a resistance

of r ohms and if it occupies I centimetres of the circumference, the

equivalent ideal winding should have a resistance per centimetre

run of the constant value r/l ohms. This would evidently entail

that the gauge of its wire should vary continuously from one point
to the next, but there is no difficulty in forming a conception
of this state of affairs. We thus have a winding of such a nature
that it produces a sine curve of current distribution round the

stator, and has the same resistance per centimetre as the true

winding. The only other condition that must be fulfilled is that

it shall produce the same magnetic effect, and this can be secured

by imagining that the total ampere turns of the real and ideal

winding are the same. Now let the other phase have a similar

winding spaced out in quadrature with the first, and we have
a form of winding which is amenable to vector treatment. It may
be objected that this ideal winding is so far removed from the

actual one as to make the results arrived at of no value, but
in practice it is found that the results deduced from the con-

sideration of this form correspond closely with those obtained by
a test. The rotor must in the same way be imagined to be

provided with a winding arranged in a practically continuous
manner.

With such windings it will at once be evident that all that
has been proved about the combination of two alternating fields at

right angles in time and space will at once follow for two alternating
currents of sine form with time when supplied to these windings.
Hence the combination of the two alternating currents in the
stator will result in a band of current distributed sinusoidally in

the winding and rotating in the stator windings, whose maximum
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corresponds with that of the maximum of the two alternating
currents in the two-phase case. The necessary phase relation that

must subsist between the two bands of current in the rotor and
stator and the band of rotating flux will be considered on p. 177.

The induced E.M.F.s. We must now consider the E.M.F.S

that will necessarily be produced in these two belts of wires by
the rotating flux, and also the methods by which they can be

represented. Let any wire in the stator winding be considered

(Fig. 148) ;
it is at rest and the flux is rushing past it at a certain

velocity, ^ ,
which will be very nearly equal to the product of the

angular velocity of the field, fi, and the radius of the rotor, say p. If

<f)
is the value of the flux in which that wire stands at the instant

Vi or(Vi-V2)

A

Fig. 148.

taken, there will be an E.M.F. generated in it of the amount v^ t

hence each of our little wires will have similar E.M.F.S generated in

them, and thus there will be a sine distribution of induced E.M.F.S

in the stator windings due to the rotating field, which will form

a band of induced stator E.M.F. lying exactly in phase with the flux

produced in the air gap. The maximum value of this E.M.F. will

evidently be 4>. vl} and the vector corresponding to it will be of such

a length as to represent the E.M.F. to some suitable scale, and will

point in the same direction as that representing the band of

induction in the gap. Now let the same point be one of the rotor

wires
;
in this case the wire itself is moving in the same direction

as the flux but with a velocity v2 which is equal to the product
of the radius of the rotor, p, into its angular velocity, <w, and hence

the relative velocity of the wire and the field is (vj v2). It

follows that in this case there is also a sine distribution of E.M.F.

in the rotor wires, but its maximum will be only ^>.(vl v2). The
vector representation of this would be a line whose length inter-

preted on the proper scale for pressures would give the quantity
<p ,(vl v2).

The direction of that vector in space will be the same
as the last one and the same as the gap-flux vector. This some-
times causes the student a little difficulty since the angular

velocity of the field and rotor are different, but it must be
recollected that since the velocity of the field is ^ and that of the

rotor is v2 ,
the relative velocity of the two must be the difference.
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It follows that while the band of E.M.F. in the rotor is moving
relative to the wires at the velocity (^ v2) it must be moving
in space at the velocity (^ v%) + vz or vl} and hence at the same

velocity as the other E.M.F. and the flux vectors. The same
consideration evidently applies to the two current vectors. Hence
a set of vectors such as we have considered will form a definite

geometrical figure which can be considered to be rotating at the

velocity v about an axis and will then represent the state of

things in the motor.

If the whole machine be imagined to be rotated backwards
with the velocity of the field, this figure will be reduced to rest in

space, but the rotor would then be moving backwards with the

small velocity (vx v2 ).

The impressed pressure. There are other E.M.F.S that must
be taken into consideration, and in particular the impressed pressure
at the terminals of each phase of the stator. As with the currents,

these will necessarily be related in quadrature both in time and

space, and with our idealized band of stator wires must be

considered as constituting a rotating belt of impressed pressure
in the constituent wires distributed in a sinusoidal manner round

the circumference at any moment and likewise rotating at the

velocity v^. This band will evidently have a definite maximum
value, which may be arrived at in the following manner. The
virtual value of the pressure applied to each winding is known, let

it be S y
then the maximum, on the assumption of sine variation

with time, will be \/2 . . But if each winding on the stator have

t turns in it, the maximum E.M.F. per wire will be \/2^ /, and we

may take this as the value of the maximum of the sine distribution

of pressure that is existing in each phase of our ideal stator. We
shall shortly have to deal with other E.M.F.S but will defer con-

sidering them for a little.

Phase relations. Up to the present nothing has been said

as to the relation between the two current bands as regards phase.
It is evident that if the flux of magnetism did not require any
magnetising force to produce it these two bands would at every
instant exactly exert the same magnetic effect but in opposite

directions, and would consequently be represented by two equal and

opposite vectors. But to force the flux through the circuit will

require a certain magnetomotive force which, as in the case of the

transformer, must be supplied from the source of energy giving
current to the stator. When the details of the magnetic circuit

are given, the maximum current that will be required in either

phase in order to produce any desired maximum induction in the

air gap can be calculated in a similar manner to the transformer.

Owing to the presence of an air gap this maximum current is far

larger than in a transformer of about the same size. Hence in
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our ideal winding on the stator another sinusoidal band of

current having this ascertained maximum value must be flowing,
which band is concerned solely in producing the rotating flux.

Thus the actual current band in our stator will consist of the

combination of two bands, the one an exactly inverted image
of the rotor's band and the other this extra magnetising band.

The relative phase angles of their representative vectors must
now be found, and in doing so it must be borne in mind that

the rotor's band of current is due to an E.M.F. produced by
its wires cutting the rotating flux. Let the maximum value

of the flux in the gap be as before <f>, and draw the vector QF,

Fig. 149, from the point Q to represent the magnitude and

position of the maximum of the flux. Take as the origin for

our current vectors, then in any one of our rotor wires will be

induced, as we have seen, an E.M.F. and the maximum of this will

be 4> . (v-i v2). Thus if the vector OE2 be drawn of this length
and parallel to QF it will represent the band of induced E.M.F. in

the rotor. Owing to circumstances which will be shortly gone
into, the current in any one of the wires of the rotor will lag after

this E.M.F., by a small angle X. This angle is a time lag angle
for the rotor current after its pressure, that is if the pressure has

its maximum at a definite instant, the time ^ seconds must
ZTT

elapse before the current is a maximum. But in that time the
flux belt will have advanced through the same angle since its

velocity is such that it makes one revolution, 2-Tr, in the time r,

hence to represent the space relation of the rotor current we can
draw its vector at the same angle, X, to the air gap flux vector,

L. 12
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that is, to the rotor's E.M.F. vector. Hence if the vector OC2 be

drawn at this angle, X, to OE<> it will represent the current band in

the rotor. From the method in which the winding of the stator

is carried out it will be seen that in order to produce a band
of flux which can be represented by QF we must have a belt

of current acting in the direction shown by the arrow round QF.
But such a band is to be represented by a line drawn in the

direction of the maximum current in the band, and hence the

vector for the magnetising band must be drawn from perpen-
dicular to OEZ or QF, as shewn by 00. The length of 00 has to be

taken to represent on the scale of current the maximum value of

Belt of Stator current

Belt of air$ap Flux

Belt ofRotor current

Difference of current'
that is belt of

magnetising current

Fig. 150.

the magnetising current band referred to above. Now the stator

band of current has to equilibrate OC2 and provide 00. It will

therefore be given by the parallelogram drawn in the figure and
will be represented by the line OClf The curves in Fig. 150 will

give an idea of the distribution of these current bands round the

motor at any moment : in addition to the flux band and the two
current bands a lower curve is drawn which is the difference

between the two latter, and hence represents the band of mag-
netising current, it will be seen that it is in quadrature with the

flux band. It will also be noticed that the axes of the maximum
values of the flux and the two main current bands nearly

correspond, that is these three are nearly in or antiphase with

one another.

Leakage fluxes. Another important point now claims

consideration. Up to the present we have assumed that the only
flux existing is that which passes across the air gap and is cut by
the conductors both of the rotor and the stator. But the currents

in the two sets of windings can produce two local fluxes round

themselves, which fluxes in no way contribute to the air gap flux.

Consider a set of slots which is situated at the place where the air
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gap flux is a maximum, this flux being due to the combined
effects of the wires in all the slots. Then from what we have

just seen the two currents in the wires in the slots of stator and
rotor at that point will be roughly at their maximum value also.

Hence each of them can send a local flux round the wires as

shown in Fig. 151. The result as regards the magnitude of the air

gap flux is manifestly to leave it unaltered in amount but it will

distort its distribution. These two fluxes are of exactly the same

Sbztor

^~^ ^
_.

Rotor

Fig. 151.

nature as the leakage fluxes in the transformer, but in the present
case they will be much bigger in proportion than in any trans-

former, firstly because the two opposing sets of windings are of

necessity placed on different parts of the magnetic circuit, and

secondly because there must be an air gap between them. The

leakages will be less in proportion the smaller the air gap can be

made, and for this reason the gap is reduced to the smallest value

consistent with safe working. Since these fluxes have by far the

greater part of their path passing through a circuit of which the

reluctance is constant, the maximum value of those fluxes will be

very nearly proportional to the currents that severally produce
them, so that we can write them

<|>
i?1
= ^1 C 1 and 3>2 = A:2C2 , ^ and k2 being constants.

These fluxes will show their presence by the production of

additional E.M.F.S in the wires both of stator and rotor due to the

fluxes being cut by the wires and these new E.M.F.S must now be
considered in order that we may properly complete the diagram of

our ideal motor.

But before we can find out the proper directions and magnitudes
of the vectors for those E.M.F.S it is necessary to consider the form
that the leakage flux will have in our set of wires carrying the

sinusoidal band of current in either set. Let the curve in Fig. 152

represent either band of current, then if we consider two wires in

the winding equally distant from the point of maximum current,

122
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P, the fluxes due to the equal currents in those wires will flow as

shown by the little arrows below the maximum, and since these

oppose in the gap there will be no nett flux embraced by the wire

at P : again taking two wires equidistant from the point of zero

Current
Band

Leakage

Leakage.
Flux.

Fig. 152.

current, 0, the directions of the equal local fluxes will be the same

again, as shown by the little arrows below the minimum, which in

this case run in the same direction
;
hence the maximum leakage

flux will occur there, that is at the point where the current is zero.

Hence it follows that each of the bands of current will be accom-

panied by a band of leakage flux situated in space at right

angles to the position of the band and having a maximum value

proportional to the current maximum in the corresponding current

band.

The E.M.F.S produced by the wires cutting these bands will be

represented in the usual way by means of vectors pointing in the

same direction as those of the bands, and since <tsl and <J>
ffi

are

the values of the maximum flux for the two bands of leakage flux,

the E.M.F. produced in the stator wires will have the maximum
value vl . Osl while that in the rotor wires will have the maximum
value (vi v2)

<I>g2 . At present we will assume that the values of

<J>gl and 4>S2 are known.

Vector Diagram. We can now proceed with the full dia-

gram for the motor. Take Q, Fig. 153, as the origin for the flux

vectors and for that of the current and pressure ones. Draw the

line QF to represent <J>, the maximum air gap flux. Then as before

if OE2 be O.fvj v2)it will represent the band of impressed E.M.F.

produced by the gap flux in the rotor wires, and if OE^ be equal to

4> . V-L it will represent the band of induced E.M.F. produced in the

stator wires by the gap flux. If r denote the resistance per centi-

metre run of the rotor band of conductors and if C2 be any assumed

value of the maximum current in them, a pressure of the amount
C2r will be required to force the current through the wire as far as
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resistance is concerned. Hence this pressure will be required in

that one of our wires which is at the point of maximum current.

In addition the current C2 will have produced a leakage field dis-

tribution of the maximum value <&K, just proportional to its own
value, but the vector for this field has to be drawn at right angles

Fig. 153.

to that for the current
;

also this flux, <J>82,
will induce an E.M.F.

(^i #2) &K in our rotor wire, the vector for which will be in the

same direction as the vector for O^. It follows that the E.M.F., OE2,

has to be so related to those for the pressures C2r and (^ v2) . O^
that it is the vector sum of the two, and at the same time the two

component vectors are at right angles. Hence if we draw a

semicircle on OEZ and make Or equal to C2r the other side rEz

must be the vector representing (vt V2) . 4>^. Let this be drawn
from and called OS2,

then the length OS2 will be the value of

(#1 ^2) ^2 on the E.M.F. scale. It follows that we can draw the

vector QZ/2 parallel to OS2 to represent the amount of the leakage
field in the rotor. Furthermore if the triangle QFR be drawn
with its sides parallel to those of the triangle E20r, it is evident

that since FR will be parallel and equal to QL2 ,
the line QR will

represent the nett flux in the rotor or that concerned in actually

producing the pressure that impels the current in the wires

against their resistance only. We now proceed as on p. 176 : to

produce the air gap flux represented by QF will require a specia 1
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band of current in the stator found as described on p. 176, and its

vector will be 0(7, at right angles to QF. The Vector representing
the rotor band of flux will be in phase with Or, let it be given by
0(72 . Then in the manner before described we can find the vector

representing the stator current band, or OC^ The presence of

this band means that there must coexist a band of leakage flux, as

we have seen, and the vector representing this flux must be at

right angles to the current vector and of a length proportional to

that current. It is drawn at QL^ Its length is of course equal
to <3>S1 measured on the flux scale. The actual total flux in the

stator must be such as to produce both QF and QLl} and will

therefore be given by QS where SF is equal and parallel to QL^
The existence of the flux QLt in the stator will necessitate the

production of an E.M.F. of the amount vl
<&sl in a direction parallel

to QL1} hence the line 0$j can be drawn to represent this E.M.F.

We will neglect the small pressure required for forcing the
currents through resistance of the band of stator wires since the

values of the induced E.M.F.S are evidently far more important.
It follows that the impressed pressure band referred to on p. 176
has to perform two functions, firstly to equilibrate OS1} and

secondly to equilibrate the E.M.F. induced in the wires by the

air gap flux. Hence, if we draw OE equal and opposite to OE
and OS equal and opposite to 08^ the resultant of these two

vectors, that is 0V, will nearly give the direction and magnitude
of the band of impressed pressure in the stator.

It will be noted that the flux diagram is perpendicular in

space to the current one; that the triangles QFR and OE.2r are

similar, the ratio of their sides being (^ v2),
and the triangles

Q8F and OVE are similar, the ratio of the sides being vlm

Degree of approximation in sine assumption. A con-

sideration of this vector figure will show that under ordinary
conditions the assumption of a sine band of flux is not far from
the truth. For it will be seen that the E.M.F. due to the rotating
belt of flux, that is the E.M.F. given by OE, is the predominant one
in the stator. If the impressed pressure curve is truly sinusoidal

in each phase, it must follow that the corresponding E.M.F. belt is

of the form we have assumed, namely one consisting of a simple
harmonic curve of E.M.F. rotating in the stator windings. It

necessarily follows that the E.M.F., OE, will also be practically of

the same form, and hence that the flux to which it is due, that is

the air gap flux, is also a belt of that nature. This point has been

experimentally verified by direct observation on the instantaneous

pressure generated in test coils placed in the air gap, and it was

proved that, with a sine wave of impressed pressure, the rotating
flux is sinusoidal in form round the rotor. The total stator flux

must evidently be sinusoidal under such conditions, but the ex-

perimental verification would be more difficult.
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The torque of an induction motor. The next points to

be considered are those connected with the operation of the

motor under different conditions such as loaded, starting, etc.

For this purpose it is necessary to find an expression for the torque
that such a motor can produce, and it is convenient to slightly
alter some of the symbols hitherto used. If we denote as before

the radius of the rotor by p, and the slip (or the difference between
the angular velocity, H, of the field and that, co, of the rotor) by
o-, we can write vl v2 = p . <r. Again the leakage field of the rotor

is, as we have said, proportional to the current in our wires and
if &, be some constant depending on the form of the motor the

E.M.F. induced in the rotor's wires by this leakage field can be
written k2 . C2 . par, where kz . C2 is put for 4>M. But for any
definite rotor the quantity k.2 . p is fixed and we will denote it by
the single letter L. Hence if the triangle OEp (Fig. 153) for the

pressures existing in one of the rotor's wires be considered, the

sides can be expressed thus : OE.2 is equal to
oy><E>, Or to C2r, and

Ezr to La- . C2. It follows from this that we can put

CZV or C =

We can now proceed to find an expression for the torque
exerted between the rotor and the stator. Consider the instant

when the air gap flux has its zero value along the horizontal line,

OOj, in Fig. 154, and its maximum at right angles along QQl : at

that instant the current band in the rotor will, as we have seen,

occupy such a position that if the line CGt be drawn at the angle,
X to 00l} the zero of the current band will be along CGl and its

maximum along DD at right angles thereto. Consider any point
P on the circumference making the angle 6 with OOj. Then the

flux in the air gap at that point will be 4> sin 0, while the current

there will be C2 sin(0 X). Consider the arc of the rotor sub-

tended by the small angle dd, in that portion ofthe rotor the total

current will be p . C2 sin (6 X) dQ, and thus the torque on that

part will be given by the product of the flux, the current and the

radius, or will be

The torque produced by the whole armature will evidently then
be given by

P =
p2 . cj> . C2 .

I
'sin . sin (6

-
X) dB,

Jo

on evaluating the integral this gives P = p
z

. 4> . C2 . TT . cos X, but
we see from Fig. 153 that

Or r
cosX = 7-^r

=
,

C/ 2 Vr2 + ^Vv
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and we also have
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<I>.p.cr--

Vr2

Hence the final expression for the torque is

rer

For the immediate purpose in hand it is enough to consider that

the air gap flux is constant under all circumstances, in which case

we can put

P-k^~

In terms of the total flux <>,, crossing the air gap we can write

7T
k = -T . p . <>/. For the mean air gap flux is evidently

-
<I>, and

hence the total flux is

7T
X

7T/3
2 .

It should be noted that, other things being equal, the torque
is proportional to 4>2. Now the induced pressure in the stator at

constant periodicity is proportional to <3>, and since we have seen

that the impressed pressure is roughly equal to the induced one,

we can assume that the torque will be approximately proportional
to the square of the impressed pressure.

Running condition. Some special conditions of operation
must now be considered. Take the case of running under load

;

since the loss in the rotor is proportional to the slip, a, it will be
small under such conditions and the diagram (Fig. 155) will represent
the state of things. When there is no load externally applied to



THE INDUCTION MOTOR 185

the rotor the slip will be extremely small and the current and

leakage in the rotor practically zero, thus the angle of lag in the

rotor wires will be nearly zero and the diagram will be somewhat
as shown in Fig. 156. Owing to the large air gap which, as

we have seen, necessitates a comparatively large magnetising
current, there will, even in this case, be a fair amount of leakage

Fig. 155. Fig. 156.

flux in the stator, and hence the corresponding E.M.F. will have
considerable value, thus at no load there will be quite a large

angle of lag, yfr,
in the stator current.

Starting. The conditions at starting involve the slip being fl

and thus cause both the current in the rotor and the angle of lag
between this and the induced pressure to be very great, the

leakage E.M.F. in the rotor being excessive owing to the high slip.

This means that the current in the stator must also be very large,
the leakage flux thereof also very large, and consequently the

phase angle between the current and pressure also very large.

Fig. 157 will show the relations existing in this case.

It will be seen that if the flux in the air gap be constant as we
have assumed, the impressed pressure required is much greater than
in the previous cases. But the quantity that is actually kept con-

stant being (as in the transformer) this pressure, it follows that the
flux will be largely reduced at starting, and hence the torque will
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be much smaller than that corresponding to the assumption of con-

stant air-gap flux. Furthermore, the current demanded from the

Fig. 157.

source of supply is very large, many times the maximum value
that is wanted in ordinary running, and hence some method must
be found to better the starting conditions. We shall describe in

E/.E2

Fig. 158.
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Chap. XVII methods that can be used, but just now we shall show
that if by any means we can increase the resistance of the rotor

wires at starting a much better state of things will be available, the

method of doing this will be seen later on. In this case with the

maximum slip of O the E.M.F. in the rotor wires will be the same
as before, but since the resistance of the wires is increased, the

current and the angle of lag will be much diminished. Thus the

stator current will also be diminished together with its leakage
field and the angle of lag as shown in Fig. 158. It will follow that

the torque will be actually increased at starting. That this is the

case when we assume constant air-gap flux is evident from the

expression for the torque. For the value of LSI is then big

compared with r and thus the torque at starting is nearly given
rl r

by Pg
= y

- =
y^r, that is, it is proportional to the rotor resistance.

Mechanical characteristic. Under the assumption that

the air-gap flux is constant for all loads on the motor, which is only

absolutely true when the slip is as small as it usually is in nearly all

practical conditions of running, the expression for the torque as a

function of the slip enables us to derive the relation between the

torque and the angular velocity of the motor, or its mechanical

characteristic. Take the line OX (Fig. 159) with a length equal to

the angular velocity (O) of the rotating field on any assumed

scale, and let a scale of torques be drawn along OT. With X as

origin draw the trace of the relation given on p. 184 between the

OS N
Torque

Fig. 159.

torque, P, and slip, <T. If P be any point on the curve thus

obtained we have PM equal to the slip and MN to the constant

angular velocity of the field or H. But if co is the angular

velocity of the rotor we also have fl = co + a, and thus PN is this
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angular velocity. It follows that the curve is also the mechanical
characteristic of the motor, that is, the relation between torque
and speed, provided OX is taken as the axis of angular velocity.
It will be seen that the torque attains a maximum value at the

point Q, from X to Q the torque increases with fall in speed ;
that

part of the curve is the only actually existent portion of the

mechanical characteristic: from Q to 8 the opposite condition

prevails and the relation is unstable with ordinary forms of brake
or load. The abscissa OS is the torque that is produced when the

rotor is at rest and consequently represents the starting value of

the torque. If the opposing torque at that moment, whether
internal or total, exceeds that amount, the rotor will not start.

If less, it runs up to the proper speed corresponding to the torque

required as given by the stable part of the curve, XQ.
Consider the part of the curve extending nearly up to the

point of maximum torque. In any practical rotor which is re-

quired to work constantly it is necessary, for reasons of efficiency,
to keep the slip small, and in this case La- is small compared with

r. Thus the running torque is nearly given by Pr k.- or Pr

is proportional nearly to the slip. Hence the greater portion of XQ
is nearly a straight line. It follows that such a motor as we are

considering will run from zero torque to nearly its maximum
possible torque with approximately constant speed, and is thus

very like the direct current shunt motor in its mechanical pro-

perties. Furthermore it is seen that Pr is inversely as the rotor

resistance, r, and hence for a definite slip the torque will be

greater the smaller r is. Hence it is desirable in general to keep
the rotor resistance as low as possible. In some cases, such as

motors for cranes, the important thing is not constancy of speed or

even high efficiency, but the production of high starting torque,
and in such a case the short-circuiting ring of the rotor's rods is

made of some metal of higher specific resistance than copper.

Dynamo action. We might enquire what happens for

angular velocities outside the ranges in Fig. 159. Thus if the

rotor be not merely at rest but be driven in such a way that it is

rotating in the opposite direction to the field, we get the continua-

tion SB of the curve (Fig. 160). Since the rotation is in the

opposite direction to the couple that the rotor produces, the

machine will be a generator and not a motor. Again, let the

rotor be driven above the synchronous speed, &, the slip, being
still given by the relation a- = 1 o>, will be negative since o> is

now greater than H. Thus the torque speed curve will be as in

the part XF of the curve having the same form as the original

part, but on the opposite side of the axis OX. In this case the

angular velocity is in the same direction as for the motor, but the

torque is opposite in sign, hence the machine is again acting as a

generator, that is if the stator be connected to mains in which the



THE INDUCTION MOTOR 189

proper phase relation between the pressures is maintained, and if

the rotor of the machine is driven by external means so as to run
above the synchronous speed, power will be delivered to the mains

Fig. 161.
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attached to the stator. Such a machine is called an asynchronous
generator. It must be noted that it cannot of itself produce
power, the stator must be excited by the properly phased currents.

One important property of such a machine is that it evidently
delivers a current into the mains which leads the pressure instead

of lagging behind it
;
it therefore tends to improve the power factor

of the system.

Actual form of motor. Fig. 161 shows a complete in-

duction motor of the form we have been considering, while

Figs. 162 and 163 show the construction of the stator and rotor of
the same. The form of winding of the stator can readily be seen
as well as the method in which the short-circuiting of the rotor

bars is carried out.

Fig. 162.

Fig. 163.



CHAPTER XV.

THE HEYLAND CIRCLES.

THE following very elegant construction for investigating the

relations between the various quantities in a rotary field motor
has been given by Mr Heyland, and is generally known as the

Heyland diagram. Since the applied pressure, ,
is constant, the

maximum stator flux must likewise be a constant, let it be denoted

by <l>. Let QS, Fig. 164, be this constant stator flux and QR the

nett rotor flux as in the previous figure (Fig. 153). Then SR will

be the total leakage flux between the rotor and stator. From the

same figure it will be seen that the two leakage fluxes from
the stator and the rotor are very nearly in a line, and in most
cases little error will be made if it be taken that all the leakage
flux between the two is in phase with the stator current and

proportional thereto. Redraw this triangle as at OPD, the sides

of the latter triangle being perpendicular to those of the first,

and the arrows on the sides showing the actual direction of the

different fluxes. Then since the leakage flux has been taken as

proportional to the stator current the line OP can be taken to

represent the value of the stator current as well as that of its

leakage flux. Since OD represents the total constant stator flux

3>, it will be of fixed length, as the back E.M.F. due to it has to be

equilibrated by the impressed pressure. Furthermore DP is the

nett rotor flux, and from Fig. 153 it will be seen that the rotor

current is in phase with that flux. Hence if a line PG be drawn

perpendicular to DP (that is, parallel to QR the rotor flux), it

will give the actual direction of the rotor current.

The rotor flux is due to the combined action of the stator and
rotor bands, and hence the band of current for that flux must
be given by the resultant of the vectors representing those bands,
but it must also fulfil the proper space relation between a flux and
its corresponding magnetising band, that is to say, it must be
in space at an angle of 90 to its flux, hence the direction of this

resultant of the stator and rotor bands of current must be in the

direction parallel to DP, that is, perpendicular to the direction of the

rotor flux RQ. Let PG cut OD in C, and on OCD draw the semi-
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circles shown. Draw OG parallel to PD; since OP gives the value

of the stator current, and its two components (the nett rotor current

and the magnetising current) have respectively the directions given

by PG and OG, it follows that these latter quantities must be

represented by those vectors.

Since the nett rotor flux is due to the mi

OG, and since the rotor's reluctance, p, has been taken as constant,
it follows that DP and OG have a constant ratio. Further, the

angles DPC and CGO are necessarily both right angles, hence it

follows that the curves on which the points P and G move will be
two fixed semicircles. It also follows that the line OD is divided

in some definite ratio at C, and this ratio must now be found.

Suppose the machine to be running in such a condition that there

is no leakage whatever, all the constant flux, <, passes directly
into the rotor and thus only encountering the corresponding
reluctance p. This could be nearly realised if we imagine the

rotor to be running in absolute synchronism with the field. Then
the only current band existing would evidently be given by OG, as

P will have come down to the point C. Hence if k be some
definite constant depending solely and entirely on the form and
amount of the stator windings, the magnetomotive force acting
will be given by k . OC, and this will then succeed in forcing the

definite flux 4> through the reluctance p. We thus have
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k . OC= 0/3. Now let the same definite flux be imagined to entirely

pass through the stator leakage paths the reluctance of which is

pl ;
this means that P must move down to D and that the current

required in the stator will be given by OD, the rotor current being

exactly the same in amount and so opposing the stator band that

no flux can enter the rotor. Since the current given by OD
is passing through the same circuit as before, the magnetomotive
force produced will be k . OD, and since the resultant flux produced
is taken to be the definite amount <t>, represented by QS, we now
have k . OD = 4>pj . These two equations lead to OD/OC = pjp = v,

and hence the line OD is divided in C in such a way that

also DC:OD::(v-I):v, or DC = z.OD,

where a is a constant.

It is evident that it is not necessary to draw the little

semicircle in order to get the rotor's current, for we have

PC/PG = DC/DO or the rotor's current given by PG is also given

Torque and slip lines, ideal case. Assume that no losses

occur in the machine, then it can easily be shown that other im-

portant quantities can be represented by lines on this diagram ;
thus

if the line PT be drawn perpendicular to OD from P we can show
that this line is proportional to the torque exerted by the motor.

For the torque is proportional to the product of the current in the

rotor multiplied by the flux that the rotor is cutting at that

instant. Now the current is given by PG and the corresponding
flux in phase with it in space by the line QR. Hence the torque
is proportional to the product PG . QR. But we made DP
proportional to QR and we know that PG is proportional to PC,
hence the torque is proportional to the product DP. PC. But
from the similar triangles DPC and DTP we have

PC/CD = PT/DP or DP . PC= PT. CD,

but since CD is constant the torque is proportional to the line PT.
The maximum torque will then, we see, occur when the point P is

at the top of the semicircle.

Again, draw a perpendicular from C and produce DP to cut it

in W. The line CW is proportional to the slip. For we see from
the considerations on p. 175, that the current in the rotor

is always just proportional to the rate at which the flux in phase
with that current is cut, and hence since the current in the rotor

is proportional to PG and the field to QR, the slip is proportional
to PG/QR which is as before proportional to PC/PD. But in the

L. 13
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similar triangles CPD and DCW we have PC/PD = CW/CD and
the line CD is constant, hence a is proportional to C.W.

The maximum slip will occur at standstill of the motor,

corresponding to a having the value H, and hence the line CW has
a finite length ;

it follows that the position for the current vector

OP at standstill is at some such point as P^ not extending down
to D. Again, when running light there is still a definite, though
small, torque required by the rotor owing to frictional and
other losses, and hence the current vector OP will have a similar

limiting position P2 on the other side of the circle.

Applied pressure line. The position of the applied pressure
vector can be found thus. Since QS is the total flux through the

stator the corresponding total induced E.M.F. in it will be in phase
with the flux QS, hence the impressed pressure will be in antiphase
with that flux, and will be represented by the line V drawn from

equal to the induced primary pressure but in the opposite
direction. Thus the angle of lag, X, will be POFand the power
factor will be the cosine of that angle. But since the angle POC
is the complement of POV the power factor is also the sine of

POO or is given by CZ/OC where CZ is the perpendicular from C
on the current vector, but since OC is constant the power factor is

proportional to the line CZ. It is evident that this has its maxi-
mum value when the line OP touches the circle, and hence the

corresponding current should be the one at which the motor does

most of its work.

Application to actual motor. The diagram thus derived

refers to the relative values of the maxima and angular positions
of the different quantities concerned in the case of the idealised

machine, and for this aspect of the question the whole diagram
must, as has been said, be thought of as rotating with constant

angular velocity equal to the periods per second of the applied

pressure. Now consider a single phase of the machine, and let

the projections of the several current and pressure vectors on any
line be taken. It is evident that these projections will give the

corresponding instantaneous values, both in value and phase
relation, of the corresponding quantities per phase, that is of the

alternating bands of current, etc. in any one of the windings of our

idealised machine. Depending on the connections of the winding,
whether two- or three-phase, so must we take two or three lines of

reference at the proper relative angles to get a full representation
of the events in the separate circuits. Now we must consider

that each circuit executes the same cycle as the others, and hence

any one can be taken as representative of all, the only difference

between the successive circuits being that the events occur either

\ or of a period later in time. This being so, when we are

considering the same quantities for any phase of any motor, it is
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evident that instead of taking the vectors as representing the

maximum value of the quantities concerned with one of our

imaginary circuits, we can equally well take them to represent the

maximum values, both in magnitude and phase, of the corresponding
quantities referred to the actual circuit of the machine. Further,

since, with the assumed sinusoidal law of pressures, etc., the
maximum bears a definite ratio to the virtual value, we can use

directly the virtual values of the different quantities (current and

pressure) without any loss of generality. It follows that a similar

construction is available for any induction motor where the

quantities involved are no longer the currents, fluxes, and pressures
in the idealised equivalent winding, but the actually existent

measured ones corresponding to any phase of the actual stator of

the motor.

Motor with losses. The diagram developed on p. 190 refers

to a motor in which all the losses were neglected, nothing having
so far been said as to these quantities. It is now necessary to

see if it is possible to modify the diagram in such a manner
that it will give a suitable representation of the actual condition

of affairs in the motor when these losses are taken into account.

The losses fall broadly into two categories, those due to purely
ohmic resistance in the windings of the stator and rotor, and those

incidental to the rotation of the latter in the air-gap field.

Representation of ohmic losses. Take any line 0V
(Fig. 165) to give the direction of the applied pressure on any phase
of the stator, and for the present let it be assumed that we have
drawn on the line OD perpendicular to OF a Heyland circle

OMD as before : the method of actually obtaining this circle will

be given later on. We will, in accordance with what has just been

said, take it that this refers to any phase of the stator, that is, ifP
is any point on this circle, OP will represent the virtual stator

current in magnitude and the phase of its maximum relative to V.

Hence from what we have done before it will follow that DP
represents the rotor field in phase and magnitude, assuming that

resistance is absent.

The effect of resistance in the stator can be represented as

follows: the actual stator current OP is equivalent to the two
currents OC and PC, of which the former is constant and the latter

increases with the load on the motor. Hence any loss of energy
due to the passage of the current OC falls into the category
of losses incident to the production of the flux, and can thus
be left for future consideration. Hence the drop of pressure
incident to varying load is proportional to PC. The condition of

operation of the motor is that the applied pressure is constant,
and thus it follows that any diminution of pressure due to drop
in the stator wires must be subtracted vectorially from the applied

132
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pressure in order to obtain the residue that has to equilibrate
the induced pressures. Thus both the induced pressure due to

the leakage field and that due to the rotor flux will be

necessarily less when a drop occurs in the stator due to its

resistance. It follows that the flux is diminished owing to this

drop, and it can be taken that it is diminished in proportion
to the drop in the stator.

Fig. 165.

Thus let a point Q be taken on DP such that PQ bears

a constant ratio to the variable part CP of the stator current
;
the

effect of stator drop can then be represented by assuming that the

rotor flux is reduced from DP, the value it would have with no

drop, to DQ. Now since the angle DPC is a right angle, and the

sides CP, PQ of the triangle CPQ are always in a constant ratio,

this triangle must remain of the same shape for all positions
of the point P, and hence the angle DQC has always the same
value. Thus the locus of Q is the circle CQD as shown.

The effect of drop in the rotor can be represented in exactly
the same way. For CQ is also proportional to CP, and hence to the

rotor current as we have seen, hence if the point R be taken on
DP such that RQ bears a constant ratio to CQ, the line DR will

represent the value of the nett rotor flux, after all the drops of

pressure are allowed for. By similar reasoning to the last case,

the point R will describe the circle shown. Hence the effect of

the two drops in rotor and stator can be represented by drawing
in the two extra circles.

Representation of core and rotational losses. It

remains now to consider the other sources of loss. As far as the
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stator is concerned these are, hysteresis, eddy currents, and the

constant ohmic loss due to the current represented by OC. The

periodicity of the applied flux in any phase of the stator is

constant, and the value of that flux will diminish slightly with
increase of load. As regards the rotor the principal loss is the

constant frictional one; as regards the core losses, when the

slip is small the flux is large, and when the slip is very great
the induced rotor currents force the flux out, and hence the
flux is small. A very close approximation to the truth is

then arrived at, if we assume that the total loss of energy-
incident to the magnetisation and rotation of the motor is

nearly a constant quantity. This can be represented in the

diagram as follows. Draw a scale of current appropriate to that

used for the diagram along the line OF, and set off a point I such

that it represents a current that, flowing in phase with the given
applied pressure, will represent this constant loss of energy, and
draw a line II parallel to DO.

Input, output, torque, and slip lines. We will now
see how we can represent the other related quantities in the

amended diagram. Firstly, as regards the input : the current

flowing into any phase of the stator is given by OP, and hence the

part of this current that is in phase with the terminal pressure
will represent to some scale the input. If Pp is drawn from
P perpendicular to OD it will, therefore, be proportional to the

input.

Secondly, to find a line giving the torque : the nett air-gap flux

is given by DQ and the rotor current is proportional to CP, hence
the total torque produced is proportional to DQ x CP, that

is to the area of the triangle DQG, since DQ is its base and CP is

its height. But this triangle's area is also given by Qql x CD, and
the line CD is a fixed one, hence the total torque produced is

proportional to Q</I. But the incidental loss in the rotor is

evidently equivalent to a torque proportional to qqlt and hence the

nett available torque is given by Qq.

Thirdly, to find a line giving the output : this is proportional
to the nett pressure induced in the rotor multiplied into the

rotor's current, but the pressure produced is proportional to the

nett field acting, that is to DR : hence the output will be given by
DR x CP and hence by Ri\ x CD. As before (when the loss due
to the constant effects is considered), instead of R^ giving the

output, it will be proportional to Rr.

Fourthly, to find a line representing the slip : this is evidently

proportional to the rotor current divided by the air-gap flux, or is

PC/DQ. But PC is proportional to CQ, hence the slip is given
by CQ/DQ. Draw any line such as MS (the reason for the

selection of the special point M will be given later on), in such a
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way that the angle MsD is equal to the angle DQC'; this can

readily be done by means of a piece of tracing-paper. Then the

triangles DSs and DQC are similar, and hence the slip is pro-

portional to Ss/Ds, or since Ds is a fixed length, the slip is given

by the distance Ss.

Experimental determination of the circles. It follows

that, provided we can in some manner obtain the actual circles for

any motor, it is easy to draw up tables of the various quantities
involved which will enable the performance of the motor to be

predicted. We must now see how the diagram can be found for

an actual motor. The line V being taken and a line of indefinite

length at right angles thereto, if in any way we can find the

coordinates of any two points on the outer circle (since its centre

must be on the perpendicular to V) that circle will be completely
determined. These two points can be determined as follows,

where for simplicity of explanation actual figures pertaining to a

definite motor are employed. The motor was first run without any
load, which is called the No-load test, and the total power taken,
the current per main and the pressure of supply measured. In

the case considered, the motor was four pole running at 1300
R.P.M. synchronous speed with 43 periods, it had a three-phase
stator wound in the star manner, and the pressure between the

mains was 120 volts, the current in one main 4*1 amperes, and the

total watts 210. Assuming that we can treat the pressures as

sinusoidal, the pressure at the terminals of one of the legs of the

star was 120/V3 : the watts taken by one of the phases was 70,

and hence it follows that the current in phase with the pressure

was or 1 ampere. The wattless current, that in quadrature

with the pressure, is then given by Vl4'l 2 I 2 or 4 amperes.
Hence set out the point L so that the distance 01 is one ampere
and the distance OC is four amperes. This gives the position
of one point on the circle. It may be noted that the constant loss

line can at once be drawn through the point /.

To determine another point, let the armature be blocked

so that it cannot rotate, and again measure the current taken

per phase and the total watts, the pressure across the mains being
maintained at its former value. This is called the Stand-still test.

In this case the current was 55 amperes, and the power 6940
6940

watts. It follows that the watts per phase are
^

and the

current in phase with the pressure is ^ z or 33*5 amperes ;

o X

hence the wattless component of the current is \/55 2 33'52

or 43'5 amperes. Set off the distance ON equal to 33'5 on the

current scale, and the distance MN equal to 43*5, the point M is a.
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second point on the circle. The centre can then be found by
joining LM, bisecting it in U and drawing the perpendicular UX
to cut the indefinite perpendicular line from in the point X.
A circle drawn with X as centre is the outer one of our three

circles.

In many motors the current that would flow in the stator

under the standstill condition would be much larger than could

be safely permitted. In such a case a pressure less than the

normal value must be used for the test in order to keep the

current down to a reasonable value. Having determined this

reduced pressure, the total power taken and the current, the two

components of the current should be calculated under the con-

ditions of the test. To find what they would have been if the

pressure employed had had the proper normal value, it is only

necessary to increase each in the ratio that the normal pressure
bears to the pressure actually employed in the test. This will

evidently follow from the fact that the leakage fluxes are pro-

portional to the current only.

The inner circle can be very simply found: OM gives the

current at standstill, and at that point the total output is

evidently zero since the rotor is at rest, hence when P moves

up to M
t
R moves on to D, from which it follows that MD is a

tangent to the inner of the circles, hence if a perpendicular be
drawn from X and be cut in Z by the normal to MD, Z is the centre

of the inner circle.

The middle circle must now be determined, which can be done
as follows: at standstill all the nett flux left is used up in

providing the necessary pressure to force the stator current

through its resistance and the rotor current through its resistance.

Hence the flux given by DM has to fulfil these conditions only.
At standstill the flux corresponding to the pressure required
to force the current through the stator will, from the construction,
be given by MT (since it is represented by PQ in the general
consideration, when the current is given by OP), the value of that

pressure will be the product of the standstill current and the

stator resistance per phase. In the present case that resistance

was 0'344 ohm, so that the pressure under consideration must be
18*9 volts. It remains for -us to determine how this can be

represented on the corresponding flux vector MT. It must be
noted that the line OD represents the constant flux corresponding
to the constant applied pressure of 120/\/3 volts that exists on the

terminals of one phase of the stator, hence if the flux vector OD
represents that flux which is necessary to produce 120/\/3 volts,

the voltage corresponding to the vector DM will be DMIOD times
that amount. On scaling off the lengths of the vectors OD and

DM, and multiplying this ratio by the applied stator pressure, we
find that the pressure corresponding to DM is 41 '2 volts, hence to
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determine the position of the point T we must divide DM at T
into two parts such that MT/DM is equal to 19'5/41'2; in this way
the point T has been found. It is then only necessary to find the

centre, F, of the circle passing through D, T and to complete
the construction for the three circles.

It will be remembered that the line on which the slip was
measured was drawn through M, the reason for choosing M 'in

preference to any other point will now be evident. For at M the

rotor is at rest and hence the slip is 100/ ,
hence the line MS can

be divided as shown into a number of equal parts so that on it the

slip as a percentage of the speed of the field can be read off for

any position of the current vectors. Thus the distance Ss is not

merely proportional to the slip, but measures directly the per-

centage slip occurring for the stator current OP.

Determination of scales. We will now see how to deduce

the complete performance of the motor from light load up to the

point of maximum power factor. The scale of Fig. 165 is too small

for the different quantities to be measured on it, and in Fig. 166 is

given the part of the circles for the desired range of load with a

Fig. 166.

ram all the

torque can

scale of one centimetre per ampere. From this di

necessary quantities except the slip and the full lo;

be found. These quantities were measured in the manner
described on the complete circles, but these manifestly cannot
be reproduced.

The first point to be considered is the scales on which the
different quantities, input, output and torque, must be measured.
A scale of current is shown along which currents can be measured.
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The end point D of the diagram is in the direction shown by the

arrow.

The input. This is evidently given by the projection of the

stator current line OP on the direction of applied pressure OF,
as shown on p. 197. But the value of the pressure per phase is

120
volts and hence the total power supplied by the three stator

windings is 120 v/3 Pp watts or 0'208 Pp kilowatts.

The output. On the same page we saw that the nett output
was equal to the nett projection of the rotor current multiplied
into the pressure represented by the line CD. But if a is the

constant of the motor referred to on p. 193 we evidently have that

CP
the total rotor current is - - and hence the nett inphase rotor

current is -
. But we there saw that the relation between the

a

lines CD and DO was given by DC=z.DO and the latter represents
the applied pressure of 120/V3 volts. It follows that the output
in watts of the rotor, taking into account the three phases of the

machine, will be 120 \/3 . Rr, or in horse-powder is given by

The torque. The rate of transmission of energy from the

stator to the rotor will be given, by what was seen on p. 197, by
the product Qq into CD. But, as in the last case, this inphase
current, being in the rotor windings and reacting there with the

flux, must be interpreted on the rotor current scale. Hence the

value of this power is given by the product of the nett inphase
current, given by the length of Qq, and the pressure given by OD.
Hence the value of the power per phase transferred across the

air gap will be OC .Qq or 120\/3.Qg watts, taking as before all

three phases into account. In order to determine the torque it is

necessary to express the pressure in terms of some definite flux

and the angular velocity of the field. The latter is running round
at the synchronous speed of 43/2 revolutions per second, since the

field of the stator is four pole. Hence the angular velocity is 43-Tr or

135 radians per second. It follows that the torque in units such that

work is in joules and angular velocity in radians per second will be

given by
- -~

Qq. Further, to reduce this torque to foot-poundloO
units we must multiply by f|g, hence in this case the torque can

120\/3x550
be found from the length of Qq by multiplying it by ,

or, torque in foot-pound units = 1*14 Qq.
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CHAPTER XVI.

EQUATIONS FOR INDUCTION MOTOR.

Ix Chap. XV we saw that the determination of the no-load

power and current at normal pressure, and the determination of

the stand-still load and current at a reduced pressure, enabled us
to derive a graphical construction by which the whole performance
of a transformer could be predicted. Again, in Chap. V we derived

an algebraic method of treating the ordinary transformer from
similar results. We will now develop a similar algebraic method

by which the performance of an induction motor can be found from
observations of this type.

In what follows the current and volts will be specified by their

virtual values to avoid the introduction of factors, and they will be
assumed to be sinusoidal as before. In the two tests considered,
the no-load and the stand-still, the power generally measured is

that given to the whole stator, while the pressure is measured
between two adjacent mains, the current being that in one main.

Thus if the motor be a two-phase one, the power per phase will be
one-half of the measured power, while the current delivered by
each phase and the pressure between the phases can be directly
measured. In the case of a three-phase motor, the power per
phase will be one-third of the total power ;

if star-connected the

current in the mains will be equal to the current in the winding
of the stator while the pressure between two mains will be \/3

times the pressure across one winding. In the mesh case, the

pressure between the mains will be the same as that across

a winding of the stator, while the current in the mains will be

>v/3 times the current in the winding. In what follows the

symbols for the respective pressures, currents and power will refer

to a single winding of the stator, and must therefore be deduced
from the observed readings by the above factors. The letter 7
will be used to denote the number of stator circuits, thus 7=2
for a two-phase stator, and 7 = 8 for a three-phase one.

No-load or light-load test. Let an induction motor be run
at no load, that is, with no mechanical load on the rotor, and let dif-

ferent pressures be applied to the stator at the proper periodicity,



204 ALTERNATING CURRENTS

starting with the maximum pressure for which it is designed, and
let the current and power per circuit be plotted against the volts

on the terminals of that circuit. Two curves will be obtained of

the form shown in Fig. 168. 0V is the full pressure, and VW and
VC are the corresponding power and current. It will be found

that the motor will stop rotating at a definite value of the pressure.
This occurs because the torque produced is at that point only just
sufficient to make up for the internal losses, at the constant

revolutions of the rotor consequent on the constant applied

periodicity; it will be recollected that on p. 184 it was shown

Volts V

Fig. 168.

that the maximum torque is roughly proportional to the square
of the applied pressure. The ordinates of the curve WW give the

power lost corresponding to the given applied pressures. This

consists of the following parts : the frictional loss which will be
constant since the speed is constant, the core loss in the machine,
and the ohmic losses in the stator and rotor. Since the torque

produced by the rotor is small, the current flowing in it is also

small, and hence the ohmic loss in the rotor is negligibly small,

thus the total losses are practically the core loss, friction loss, and
the stator ohmic loss. The resistance (per phase) of the stator,

which we will denote by H ,
can readily be measured in any of the

ordinary ways at its normal working temperature, and hence for

any applied pressure in the curve the corresponding stator current

can be read off from the curve CC and the corresponding ohmic
loss deducted from the observed total loss of power, we thus

readily derive the curve LL giving the loss in friction and that in

the core for the different pressures applied. Let LL be produced
to cut the axis in P which can always be done with fair accuracy,
and it will be seen that OP represents the constant frictional loss.

Hence if the parallel line PF be drawn, cutting the vertical drawn

through the full working pressure, the line VF will give the

frictional loss at full load, and LF will give the corresponding core
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loss, the sum, or VL, is the total loss incident to the rotation of

the rotor, apart from any ohmic loss, and we will denote it by W .

Now let ^ be the no-load current at full pressure as read

from the upper curve, that pressure being throughout denoted

by SQ and being constant in value and periodicity, the power
component of the no-load current will be given by TFo/do and
will be denoted by p̂ . Consequently the wattless, or quadrature,

component will be given by (^
2 ^2

)* and will be denoted by ^q.

The no-load test, therefore, enables us to find the frictional

losses, the core losses, and the two constant components of the

current required to maintain the field and make up for the

rotational losses, that is p̂ and ^q . The former is always to be
taken in phase with the terminal pressure, the latter at right

angles thereto.

Effect of want of phase balance. In cases where the im-

pressed pressure vectors are not at the proper phase angle, i.e. 90
for 2-phase and 1 20 for 3-phase, the resulting want of balance may
cause very serious differences in the power taken by the phases.
For example the numbers given below refer to a test of a two-

phase motor at no load in which the alternator had the two
E.M.F.S slightly out of quadrature owing to its possessing a closed

winding with four tappings which were not such as to include

exactly the same number of conductors in each quadrant. It will

be seen that the power taken by the two phases is very unequal
and in fact that taken by one of the phases actually diminishes

with increase of pressure instead of increasing in the normal
manner. The reason for this effect is that the rotor currents tend
to establish a neutral point by reacting on the stator, and this point
is not the same as that impressed on the stator windings. Or we

may say, that taking one phase of the stator for reference, the

other phase's E.M.F. can be looked upon as possessing a component
exactly in quadrature with the first one, and an outstanding

component. This latter will send current round the circuit which
will be superposed on the true two-phase ones, and lead to a want
of balance. The phase relations are such that little difference

exists between the currents in the two phases. If the exact

quadrature of the impressed pressures cannot be secured, the test

must be carried out with the power measured in both of the

phases.

Impressed Power in watts, Power in watts,

pressure Phase A Phase B

407 94 586
350 100 500
310 106 390
260 117 330
200 130 390
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Locked characteristic or stand-still curve. Let the

rotor be blocked so as to be incapable of rotation, and different

pressures be applied to the stator, in each case reading the

corresponding current and power per phase. Curves will be
obtained like those in Fig. 169, the current one being practically
a straight line. In this test, since the rotor is prevented from

moving, the friction losses are zero, but there will be certain

core losses in the machine. Up to values of the current not

Volts

Fig. 169.

exceeding very much the full-load current, the terminal pressure
on the stator will be only a fraction of the normal working pres-

sure, and hence such core losses will be due to only a fraction

of the full induction cycle in the iron. Thus in comparison with

the ohmic losses they will be small. Even if pressures of greater
amount are used, the losses due to resistance will evidently be

many times the corresponding core losses for the pressures used,
and hence the losses in this test can be very approximately taken

as being solely ohmic in character. Further it also follows that

the currents flowing in the stator to produce the flux will in every
case be very small in comparison with the induced rotor current,
and hence the stator current belt can be taken as being practically
the same as that in the rotor. In fact this test is practically

equivalent to the short circuit test of a transformer given on

p. 68, and can be considered in the same way. Thus we may
replace the actual resistances of stator and rotor by an equivalent
stator resistance, and the E.M.F.S due to the leakage fields of stator

and rotor can be replaced by reactances of the amount necessary
to produce the same quadrature E.M.F.S as the actual leakage
fields. The resistance of the stator can, as has been said,

be measured directly and was denoted by R : let the actual re-

sistance of the rotor be equivalent under the stand-still conditions

to a resistance of the amount ^ in the stator, then the whole

apparatus acts as if it had the ohmic resistance (E + J^). If the

rotor is a wound one, the true resistance of its coils can be directly
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measured in the ordinary way, and this resistance can be reduced

to the equivalent stator resistance in the method described in

connection with the transformer, when the form and turns of the

two windings on the stator and rotor are known. In the case

of a short-circuited rotor this cannot well be done, but we shall see

that the stand -still test will enable us to find the value of the

equivalent resistance of the rotor R lf

It must be noted that since in this case the rotor and stator

currents are the same (since the magnetising current is negligible)
with a stator current ^ the ohmic drop will be r^>

g (R + Rl) at

stand-still.

Now consider the reactance pressures, and let SQ denote the

reactance of the stator at the normal periods, with the current ^g,
the corresponding quadrature pressure will be ^$ . Similarly let

$! be the rotor's reactance at full periods, as in the stand-still

test, then its equivalent quadrature pressure will be (^>

SS1 . Thus
the total quadrature pressure will be ^f OS> + $1)- Hence if S8

and ^s denote the observed stand- still pressure and current,

is the impedance of the circuit or /. We then evidently have

The fact that the current-pressure curve is a straight line

shows that these quantities are approximately constants for the

machine.

But the power test enables us to separate the resistance and

reactance, for if W8 is the stand-still power with the current ^
we must have Wg

= <$? (R + J^), which gives the value of

(R Q -f- RI) and thus enables us to find the value of ($ + 8^.
Also, since the value of R has been obtained, we can find the

equivalent rotor resistance or Rl . Thus from the stand-still test

we derive the equivalent rotor resistance and the sum of the

reactances under the given condition. The latter cannot be

separated into the parts ^ and S in the test, but in all the

practical applications of the results this separation is unnecessary.

Equivalent resistance and reactance of stator when
rotation occurs. Fractional slip. We must now consider

what occurs on rotation being permitted, and for this purpose we
will alter the manner in which the slip is specified. Let us write

a- = %7rn . 2 = 2 . fl, then 2 is the fractional slip, or when ex-

pressed as a percentage, the percentage slip. At synchronism
it is zero, and at stand-still it is unity. In what follows to save

trouble it will be called the slip only. Then the angular velocity
of the rotor, of a two-pole motor, will be given by

o> = fl cr or a) = fl (1 2).

As in the transformer, let us suppose only the load currents,

*$, to be flowing, consisting of two equal belts in rotor and
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stator, and find the relation between the current and pressure
in the stator with a slip 2 existing; the stator must for this

purpose be looked upon as a mere choking coil, in the same way
as the transformer was treated in Chapter V.

As far as the two leakage fields are concerned the rate of

cutting is the same as in the stand -still case, hence the quadrature
pressure will be still given by *$ (S -f $j) where *$ is the current

flowing, which is the same as in the rotor. As regards the

equivalent resistance the case is different. The true stator

resistance, RQ, is unaltered, but we shall see that resistance in the
stator that is now equivalent to the rotor's resistance will be

^ divided by 2. Since all the leakage pressures have been
transferred to the stator, the sole pressure that is left for

consideration in the rotor is that for its ohmic drop which has the
value yj>Ri. Now when rotation takes place the common flux will

generate pressures in both circuits, and the relative values of the

pressures will be as the corresponding periodicities. Let x denote

any pressure so produced in the rotor, its periodicity at the slip 2
will be 'S.n where n is the impressed periodicity ;

hence the
np

equivalent pressure in the stator will be ^ since there it is

generated at full periodicity, it follows that if the pressure in the
rotor due to drop is ^.R^ the equivalent one in the stator is

and thus the equivalent total stator ohmic drop at slip X is

f -p , RI\
(

+
Ig J

Hence all the pressures that can exist in the stator are the

following. One of the value ^ f R^ 4- ^-M and one of the value

9!? (Si + $o) where in each case *$ is the current flowing. These
two are in quadrature and thus the total pressure in the stator

must be the square root of the sum of the squares of these two

components. But this must also be the value of the constant

applied stator pressure per phase, and hence we finally get

This result should be compared with that arrived at in the case

of the transformer. It will be seen to agree with it in every
detail. Possibly the absence of any reference to a back or induced
E.M.F. in the present case may prove a point of difficulty, but
it must be recollected that, regarded as a purely electrical device,
there is no external secondary pressure to consider, the equivalent
to this is the mechanical output.

Resistance and reactance of Rotor when rotation
occurs. The next point is to see how the current belt in the rotor
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(which is equal to that in the stator) is related to any induced

pressure existing in the rotor. Let r be any such E.M.F.
;
we must

first find an expression for the impedance of the circuit of the

equivalent rotor; when it is running the resistance will be still Rl}

but the reactance will be reduced. For the quantity $, denotes
the pressure produced when the periodicity is n and the current is

unity, hence when the current is still unity but the periodicity
is less, the pressure produced will be less in proportion. Let the

slip be 2, then, instead of the periodicity of the currents in the
rotor being n it is 2n, and thus if the rotor be carrying any
current <$ at that slip, the reactance pressure will be ^.2.$!.
But with the same current the ohmic drop is ^ . Rl and hence the

total drop is <@(R? + .Srf. It follows that the impedance
of the rotor's circuits at the slip 2 will be given by (Rf + 22

. $x

2

)^
Hence when any pressure r exists in the rotor, the current

(in either rotor or stator) will be given by

Relation between impressed stator pressure and in-

duced rotor pressure. We can now find the necessary relation

between the impressed stator pressure and the corresponding
value of Sr for any assigned value of 2, for from the rotor side

the current is given by

+ 22
. S?

'

while from the stator side it is given by

It follows that Sr is given in terms of ^ by the expression

v (

... .

or &r = , ............... (!)
+ 2

Torque and output. The next point is to deduce expressions
for the torque and output of the motor.

Suppose that it is of the ordinary two-pole type, let P be the

torque it produces : then the waste of energy in the rotor's wires

will be Per, where or has the former meaning of the true slip as an

14
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angular velocity. For if there were no such ohmic losses, the

rotor currents would require no pressure to produce them, and thus
no slip would be required, and the angular velocity of the rotor

would be n (the same as the field), while the rate of working
would be PO. But the actual rate of doing work is Po>, and hence
the energy lost, incident to the passage of the rotor current on its

wires, is P (1 a>) or Pa. This must be equal to the ohmic loss

in the rotor. We have seen that the current that circulates

in any one of the rotor's circuits is

and hence with 7 circuits on the stator the equivalent rotor ohmic
loss will be given by the square of the current in each circuit

multiplied by the corresponding resistance fr and the number of

stator circuits. Also with our new notation for the slip, we have

2 . 27r?i = cr. Hence

p
a

P.

substituting for the value of Sr in terms of SQ from (1) we get

P =_ffl.S.J^.y .

- -
>

'

The units in which this torque is measured will be those

corresponding to joules for work and radians for angular
velocity.

We can now deduce the power that the rotor is delivering.
For we have its angular velocity, o>, given by

co = fl cr, or o> = %7rn (1 S).

Hence the power in watts will be the product of the torque and
this angular velocity, or will be given by

ffl.fr. 7 . 2(1-2)
'"

It will be seen from Chap. XVII that if the motor has H pairs of

poles, since the power will be the same, but the angular velocity is

yjth
of its value for two poles, the torque produced will be H times

the expression in equation (2).

The following deductions can be made. In expression (2) if we
7 r>

equate -j=-
to zero, it will give the slip at which maximum torque

occurs
;
this will be found to lead to

T>

P ~
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The corresponding torque will be given by substituting this

value of 2p in equation (2). The starting torque will evidently be

given by equation (2) if S is taken equal to unity. This
leads to

A'.fr.y
27m 2

"

But the quantity in the bracket is evidently the (impedance)
2 at

stand-still, and is hence the value of that quantity as found in the

stand-still test. But ^ 2 divided by the bracket must therefore be
the square of the stand-still current at full impressed pressure.
But this multiplied by 7 . 1^ is the energy lost in the whole rotor,
and hence we see that the starting torque is given by the whole
loss in the rotor divided by the angular velocity of the field.

This, in fact, follows from the consideration on p. 209.

The slip for maximum work can also readily be found by

equating -^- to zero : it will be found to lead to the expression

and if this expression for the slip be substituted in equation (3)
we find

/p g

maximum W= - -
,

7 "
. . .(6).

R.) + VCR, + R,Y + (S,

We thus see that a knowledge of the value of the quantities
R

, jRj and ($! + S
),

as given by the stand-still test and the direct

measurement of jK
,
will enable us to find the torque at any

assigned value of 2 from equation (2), and the power from

equation (3) ; they will also enable us to predict the maximum
torque by means of equations (4) and (2), the starting torque from

equation (5), and the maximum power delivered by the rotor from

equation (6).

Expression for stator current. We will now proceed to

see how an approximate expression can be found for the stator

current at any slip in the region where this slip is small, say not

greater than 6 / ,
that is, in the region which is of importance in

the operation of the motor.

The current flowing in the stator consists of two parts, the

magnetising current and the load current. By the no-load test we
saw that we could determine the components of the former current,

namely, ffip
in phase with the applied pressure, and ^q

in quadra-
ture therewith.

The load current which, as we have said, is the same for rotor

and stator, can be similarly divided into two components, the power
component in phase with the pressure, and the wattless component

142
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in quadrature therewith. If &r denote as before the rotor E.M.F.

the rotor current will be

This will lag on the pressure by the angle whose tangent is

2jS
^^. Hence the power component will be the value of the
jftj

current multiplied by the cosine of this angle, or by

while the wattless component will be the current multiplied by the

sine of the angle, or by

Consider the power component, its value will be

Now substitute for r its value in terms of SQ given by equation (1)
and we get that the power component is

VlC* + 2

This holds for any value of 2, but for the running part of the

mechanical characteristic 2 is, as we have said, small
;
hence if we

neglect its square in comparison with the other quantities, we have

that the power component is given by

The total power component is the sum of this and p̂ . Hence the

total power component of the stator current is

> ,

-

2. 2.

Now consider the wattless component of the working current.

By similar substitutions we shall find it is given by

2 .

or, if we neglect in the same way terms affected by 22
,
it is to be

left out of account. Hence the sole wattless component of the
stator current is the flux component of the no-load or magnetising
current, that is ffi.
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But the stator current will be the root of the sum of the

squares of these two components, hence for any assigned value of

the quantity 2 it is given by

......(8)-

The value of the starting current, when 2 = 1, can be readily
found. It is merely the result of dividing the pressure of supply

by the impedance found in the stand-still test, or is

.(9).

Prediction of performance. The complete performance of

the motor can now be predicted from a measurement of the stator

resistance per phase, the deduction of the corresponding rotor

resistance and the combined stand-still reactance from the stand-

still curve, together with the determination of the load component
and flux component of the magnetising current from the no-load

test.

The starting torque, maximum torque, starting current and
maximum power can be immediately calculated from equations (5),

(4 with 2), (9) and (6) respectively. The current taken can also be
found in relation to the slip up to a value of the sums corre-

sponding to about 6% of full frequency. Assume a set of values

for 2 and for each calculate the current from equation (8) and the

corresponding torque and power from equations (2) and (3).

Curves exhibiting the relation between the torque as abscissa and
the current per phase and the power can then be drawn. The

slip can evidently be also drawn in at each value of the torque,
since it is the assumed quantity. The losses can be found as

follows: for any one stator current the corresponding loss per

phase will be the product of the square of that current into the

resistance of the stator's winding ; the loss in the rotor will be the

product of the square of the load current into the equivalent rotor

resistance
;
the total core and rotational loss has been derived from

the no-load test, and hence the total loss at any assumed value of

the slip can be derived. This added to the calculated output for the

assumed slip will give the corresponding input, and the ratio of the

former to the latter is the true efficiency. Instead of plotting the

current per phase it is often customary to plot the total apparent
power taken by the motor, that is to say the product of the applied

pressure per phase into the sum of the currents in the phases;
since the motor has been assumed to be a balanced load on the

mains, the power factor will evidently be found by dividing
the real power by this apparent power at each value of the

torque. Thus a set of curves can be drawn up which will fully
exhibit the performance of the motor.
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In Figs. 170 and 171 are given the no-load and stand-still test

curves of a two-phase motor designed for a terminal pressure of

400 volts, a periodicity of 60, and an output of 5 h.-p. at 900

revolutions per minute. The number of poles has to be 8 to fulfil

275
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Fig. 170.

the conditions. The resistance of the stator was found to be 3'79

ohms. The curves are drawn, as is customary, for the total current

and total watts taken by the motor, so that they should be avail-

able for comparison of motors whether of two or three phases.

On referring to the stand-still test it will be seen that the

current per phase at a pressure of 400 volts is 22 -

1 amperes and
the power is 4600 watts. We deduce that the equivalent total

stator resistance is 4600-=- (22*1 )
2 ohms or 9'41 ohms, hence the

equivalent rotor resistance is the difference between this and the

stator resistance, or is 5*62 ohms, we thus get

#0= 379, # 1
= 5-62.

The total stand-still impedance is 400-f-22'l or 18'1 and hence the

stand-still reactance is

or \/237-5.

Hence we have

From these data the power, etc. can be calculated as above described.

For example take the case where the slip is 9
t

2/ ,
the value
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corresponding to maximum output. The expression for the

output is given in equation (3); we have

<o=400, ^ = 5-62, 7=2,

2 (1
- 2) = 0-092 x -908 = 0'0835,

(R, + S^o)
2 = (5-62 + 0-35)

2 = 35'6,

22
(S, + S )

2 = 0-0085 x 237-5 = 2'0.

Hence on substituting in the equation

we get

W

w=

watts

160 x 5-62 x 2 x 0'0835 , .,

kilowatts,

or

35-6 + 2

F= 4-0 kilowatts = 5'3 h.-p.

The speed can be immediately deduced from the assumed slip;
since the synchronous speed is 900 R.P.M. it will be 0'908 of this

or 817 R.P.M.

From the open circuit curve we deduce the power component
*$p and the powerless component ^q . Under these circumstances
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all the quantities in which have been found except P and n

H is the number of pairs of poles or 4, and n is the number of

periods per second ;
the result is in Joule-radian units

;
it gives

160,000 x 0-092 x 5*62 x 2 x 4

2-7T x 60 x 37-6

= 47 Joule-radian units = 35 foot-pound units.

The current taken has the power component given in equation

(8) or

and the wattless component <$q .

For the former we have

^, = 0-31

= 0-092x400 = 36-

2 + 2 . 2 . R! . R, = V(5'62)
2 + 2 x 0-092 x 5'62 x 3'79

= \/31'6 + 3'8 = 5-97.

Hence the power component is

0-31 + or 6-42 amperes,

while the value of^ is 2'18 amperes.
Hence the current per phase is

V(2'18
2
) + (G'42)

2 = 6'95 amperes

and the total current is very nearly 14 amperes.
In order to find the efficiency at the output of 4 kilowatts we

must first find the various losses. These are three in number,

(1) the constant rotational loss of 250 watts, (2) the ohmic loss in

the stator which is given by 6'922 x 3'79 watts per phase or

364 watts for the two phases, and (3) the ohmic loss in the rotor
;

it must be noted that the rotor current is the power component of

the stator current, since the other parts are concerned with the

stator only, hence the ohmic loss in the rotor is per phase
5'952 x 5'62 watts or 400 watts for the two phases. Hence the

total loss will be 1030 watts, and hence the input must be
5030 kilowatts. Thus the efficiency is about 80/o-

The power factor can be readily deduced, for the power
component of the current is 5 '95 amperes per phase and the
total current per phase is 6'95, hence the power factor is

W--V-
If different values of the slip are assumed and the above

calculations made for each it is evident that a table can be drawn
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up for the different quantities, and hence the relation of these to

one selected quantity can be shown by curves. It is usual in

practice to take the torque exerted in foot-pounds as the in-

dependent variable for this purpose, and the set of curves deduced
from the given curves in Figs. 170 and 171 for the motor we have
been considering are shown in Fig. 172.

The starting torque will be given by equation (5), being

27m./2

where / is the stand-still impedance or 181. On substituting
and reducing this comes to 46 foot-pound units.

600-

2-S-

W 15 20 25 30 35 40 45 C

Torque in Foot Pound Units.

Fig. 172.

The slip which exists when the motor is on the point of

stopping is given by equation (4), which leads to

5-62
r * =

On substituting this in the equation for the torque we get for the

value of this the amount

since (R, + )
2 + Sf

160,000 x 0-35 x 5-62 x 2 x 4

2vr x (50 x 78

+ S )
2 =

{5'62 + (0'35 x 3'79))
2

+ (0-1-24 x 237-5) or 48'5 + 29'5 = 78.

This gives P about 64 foot-pound units or nearly twice the full

load torque.



CHAPTER XVII.

MULTIPOLAR MOTORS; STARTING; TESTING.

UP to the present the case we have been considering is such
that the rotor's speed is always nearly the same as that of the

rotating field under working conditions, or the rotor makes nearly
the same number of revolutions per second as the alternations. In

many cases this is a much higher speed than is either desirable or

necessary and we must now see how this difficulty is overcome.

The state of flux in our motor has consisted in the production of

two bands of magnetic flux, the one passing into the rotor, the
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Fig. 173.

other exactly opposite to it and passing out of it. Let a winding
be adopted which will produce more than these two fluxes, for

example such a one as is shown in Fig. 173, where there will be six

such fluxes, three into and three out of the rotor. The winding is

taken as two-phase and the circuits fed by the two phases are

marked A and B. Each belt of flux will occupy a certain amount
of the circumference of the stator

;
if there be II pairs of these

fluxes, or II pairs of travelling poles, the space occupied by any
one band, being due to the action of two of the windings, will

occupy an angle at the centre of the amount =
-^

. The joint

action of the coils will produce a definite flux in the air-gap, the
distribution of this at any instant will have some definite law.
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With the same assumptions as in the case of the two-pole stator,

namely sine distribution in space along the angle & and sine

variation with time, together with a distribution of windings so

arranged (as shown) that the two sets of windings must have the

position of their maxima differing by the half of the angle <*), the

supplied currents being in quadrature, it is readily seen that the

expressions for the two fluxes due to the two sets of coils will be

4> sin ^~- sin ^> and <& cos -^ Q cos pt
vy \y

for each flux distribution. Thus the sum of these gives the

actual existing flux. This leads to 3> cos ( -7- 6 pt\ as repre-

senting the flux at any point specified by 6 and any time

specified by t ;
this means, by the same reasoning as before, that

the angular velocity with which the band of flux rotates is

~ p or ^ . Thus for each pair of windings in one phase there

will be a belt of flux rotating at the above velocity, which can

be given widely different values for any definite periodic time by
altering the number of pairs of poles, II. It can easily be shown
that the similar result holds for a three-phase winding of more
than two poles per phase.

Starting apparatus. In considering the conditions at

starting we saw that there was considerable advantage gained,
both in torque and in lessening the current required, if the rotor

had a higher resistance than in its normal running state. If the

winding of the rotor be made in the way hitherto supposed, with
bars connected at the two ends in a permanent manner, it is evident

that it is not possible to alter at will the resistance of the rotor.

In order to be able to do this it is necessary to wind the

rotor in some way so as to permit of the insertion of resistance.

Any form of winding will in general be suitable, but in practice it

is found best to employ one formed of three sets of coils wound
much in the form of an ordinary three-phase winding. The one

point that must be kept in view in settling this winding is to

avoid joining in series wires which have opposing E.M.F.S being
generated in them. Thus if the stator is so wound as to produce
an odd number of pairs of poles the rotor may be wound with
circuits that are diametral, since in this case it is evident that

the wires so joined will be in opposite fields at the same moment;
but if the poles be even in number this would result in the two

opposite wires of any coil on the rotor cutting the rotating fluxes

in the same direction, and hence in this case the winding across

the diameter would be inadmissible. Since it is desirable to place
resistances in all three circuits on the rotor, a star connection of its

windings will be required. The free ends of this star winding will
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be brought to three rings on the shaft such as is shown in Fig. 174.

In many cases wound rotors are employed even when no provision is

made for starting resistances, and then either star or mesh con-

nections can be used. In either case when the windings are

short-circuited the effect produced is practically the same as with
the former bar winding.

Fig. 174.

When a wound rotor provided with slip rings is to be started,
the pressure from the mains is applied to the stator and the rings
of the rotor are attached to a star-wound resistance which is

capable of being cut out in steps, the last point on it being that of

short-circuit for the star winding. In the cases where a perma-
nently wound rotor is present with no rings, the full pressure
cannot, except for very small sizes, be applied to the stator until

the rotor has got up speed, since extremely large currents would
flow. In this case the stator has each phase fed by an auto-

transformer during the starting period so that only a fraction of

the full pressure is applied. When the rotor has got up to speed
the stator is put direct on the mains. The operations are performed
by means of a set of double throw swithes placed on the top of a
case containing the transformers, and the whole is called a starting
box. Since we have seen that the torque produced by the motor
varies as the square of the applied pressure, only a small fraction

of the ordinary torque will be produced in this case, hence this

method is principally used to start up a motor on no-load.

Efficiency, etc. If a suitable wattmeter be available the

input in watts per phase can be measured in either by using
one phase only and assuming a state of balance to exist between
the phases, or by means of the simultaneous use of two wattmeters
as before described. The current and pressure can be measured
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in the usual way and thus the power factor derived. The output
can be found by the use of one of the ordinary types of brakes.

If the alternations of the source of supply be known, and the

number of pairs of poles on the stator from the observations of

the speed that must be taken to find the output, we can readily
derive the slip. The following method, due to Dr Sumpner,
enables us to find this directly. Let a small commutator be fixed

on the end of the shaft, having as many sections as the stator has

poles, and let this be placed in series with the source of supply
and an ordinary permanent magnet voltmeter. It is evident that

if the slip is zero this voltmeter will indicate a steady reading ;

but if the rotor be moving more slowly than the field is rotating
the voltmeter needle will oscillate slowly to and fro, each complete
oscillation taking place in the time required for the rotor to fall

behind the belt of flux a distance equal to that occupied by such
a band. Hence if the periods of the current and the pairs of poles
are known the angular velocity of the field is known, and it

follows that from the observation of the number of oscillations per
second made by the voltmeter's needle, the relative angular
velocity, that is the slip, can be at once derived.

In Fig. 175 is given the result of such a direct test on a small

induction motor. The input, efficiency, slip, and power factor

are shown in terms of the torque in foot-pound units. In addition

to

.

SynchronousSpeed "1200 R.FM.

8 12
Lbs Torque a.t 1 Ft. Radius.

Fig. 175.

are drawn curves of
"
apparent power

" and "
apparent efficiency."

The former is merely a measure of the total current in both

phases taken by the motor, the latter the ratio of the output
(reckoned in watts) to the apparent power.

Use of commutator method for small phase angles. It

will be recollected that on p. 40 a method of measuring phase
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angles was described depending on the measurement of a small

resultant pressure, and it was there stated that the limit of

application of the method lay in providing suitable low reading
voltmeters, which was difficult in the case of alternating current

ones. The use of the commutator just described in conjunction
with a calibrated direct current instrument enables this difficulty
to be overcome. Let the very small alternating pressure be

applied to the voltmeter through the commutator, and let the

motor be run unloaded, then as we have seen, the slip being very
small, the voltmeter's needle will oscillate slowly to and fro, and
its maximum reading will be the maximum reading of the given
small alternating pressure. The virtual value of this pressure will

be definitely related to this maximum by a factor depending on
the form of the pressure wave being 2*22 for a sine one.

Hence such virtual value can at once be derived if the factor

is known. It was pointed out that the special merit of the

method lay in comparing two small pressures, and if this method
of commutation be employed for both, the ratio of the maximum
readings will be practically equal to the ratio of the virtual values.

For example in one case where the load in Fig. 29 consisted of two

plates of lead placed in a bath of acidulated water the value of the

minimum pressure as commuted was found to be 0'004 . k, where k
is the constant referred to above, while the drop down the small

series resistance was 0'6 k, hence the phase angle is given by
sin A = 0*0066 or the power factor is 0*99997. In similar ways it

is possible to determine the phase angle in such a case as that

between the pressures or currents in the two coils of a transformer.

Results of such a test show that with careful design the currents
can be made antiphased within 1/1Oth of a degree.

Indirect measurement. The indirect measurement of the

efficiency has been already considered in the chapter on the no-

load and stand-still tests. Briefly the method is as follows : run
the motor under no-load and observe the current and power taken
at normal pressure, let these be ^ ,

WQ and Q . Measure the stator

resistance RQ and deduce the nett power for the rotational loss W
i.

W
Deduce also the inphase current p̂

~ and the quadrature

current <@q
= vX2

-I- ^,
2
.

Block the rotor and pass full load current, ^, noting the powerWs . Deduce the equivalent total resistance (jR + J$ and hence
the rotor resistance E l by the expression <^fs

2
(72 + j^) = W8 .

Assume any load current ^ ; up to full load this is practically
in phase with the rotor pressure and hence the square of the stator

current will be (^ + ^)2 + ^/. This multiplied by R is the
stator loss at that current. The corresponding rotor loss is R^.^f.
The sum of these two and the loss Wi is the total loss at the
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assumed current. The input being #(%+.&/), the efficiency

readily follows.

Combined test. By taking advantage of the fact that an
induction motor run above its synchronous speed acts as a

dynamo, it is possible to conduct a test on a pair of similar motors
in the manner already considered for a pair of alternators. The
motors are provided with pulleys which differ just sufficiently in

diameter to give sufficient difference in speed, when coupled by a

thin belt, to allow the requisite relative slip required to take place.

They are then both placed on the supply mains. It will follow

that the more slowly moving one absorbs power from those mains
and acting as a motor drives the other above synchronism as a

dynamo, thus restoring power to the mains. The total losses can
be measured by a wattmeter placed in the supply circuit and the

load on the machines deduced from an additional reading of

the power that is being delivered by the dynamo action of the

more quickly moving machine. With large machines, in the

absence of further data, the efficiency of the two can be deduced
from the assumption that each is working at the same efficiency
in the manner previously described for two dynamos. With
short-circuited rotors variation of load can only be secured by
altering the relative diameters of the pulleys, which is not in

general convenient or possible, or by somewhat altering the

supply pressure. In the case of wound rotors different conditions

of loading can readily be provided by placing resistances in the

rotor circuits which may conveniently be ordinary star connected

starting resistances. In general the losses in such extra strips
are small and can be neglected, but in any case a correction can

readily be applied if the circulating currents in the rotors and the

resistances of the strips are known.



CHAPTER XVIII.

THE MONOPHASE MOTOR.

IF a two-phase motor be running and the circuit of one of the

phases be opened it will be found that the motor still continues to

run at nearly the same speed as before, but with the working
phase carrying about twice the current and taking somewhat
more than twice the power. It follows that a motor wound in a
manner similar to that which we have hitherto considered can be

run, under certain circumstances, from a single circuit. Consider

Fig. 176.

a stator wound with only two sets of windings as shown in Fig. 176,
so that the effect of them would be to generate a single alternating
distribution of flux in the air-gap. As in the previous case we
will assume that this flux is distributed in the air-gap according
to the ordinates of a sine curve and that the maximum of the flux

varies as a simple harmonic function of the time. The flux at any
point defined by the angle 6 and the time t can then be written

in the form 4> sinpt . sin 0. But we can write this

<I> <E>

cos (pt
-

0)
-
y cos (pt + 0),

which shows that the single alternating distribution can be looked

on as being equivalent to two rotating fluxes of the' nature we
have already discussed, each of half the maximum of the impressed
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alternating flux, that one of them will rotate with the angular

velocity H =p in one direction, while the other rotates with the

same angular velocity in the opposite direction, that is with the

angular velocity H =
p. Let the rotor be revolving with the

angular velocity CD, then it will have a slip of H G> with regard
to the flux that is rotating in the same direction as its own, but

one of (H + &>) with reference to the other rotating flux. With
the notation used on p. 184 it follows that the torque the rotor will

exert will be given by

Two points will follow, at starting when &> is zero the torque is

zero, as is evident from reasons of symmetry, also synchronism will

not be so nearly approached as in the two-phase motor, since if

&) = H the torque is negative. The mechanical characteristic can be

readily derived from a consideration of that for the former case given
on p. 213. In Fig. 160 was shown the complete curve connecting

torque and speed for an ordinary two-phase motor from a value of

&> equal to fl to one equal to H. It will be recollected that the

part SB of this curve corresponds to dynamo action of the motor.

Tor-c^ue

Fig. 177.

The monophase motor will act as if it were operating at the same
time on both parts of the curve and thus the curve for it will be
derived by drawing the part SB of the curve in the reversed

direction and subtracting the ordinates. Thus the dotted curve

in Fig. 177 is the mechanical characteristic of the monophase
motor

;
it will be seen that it operates in a very similar manner to

the polyphase form.

Form of Flux Band. In the case of the polyphase motor
with sinusoidal currents we found that the rotor current was nearly
the image of the stator band. We must now consider the form of

the bands in the present case. Since the stator is supplied with
but a single current it will have a stationary alternating current band.

L. 15
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Let the line XXlt Fig. 178, be such as to have the position of this

band, and a length such that OX is the amplitude of the same.
Then the current band must be looked on as being given by a
vector along XXl whose length varies harmonically with time.

It has been seen above that such a harmonic variation is

equivalent to two rotating current bands, each representable by a
vector of half the length, XXlt rotating in opposite directions, and

coinciding in position at points on XX^ Let OP represent either

of these bands at the instant they coincide in the direction OX.

Fig. 178.

Let the direction of rotation of the rotor be contrary-clockwise, and
let the slip relative to the field rotating in the same direction be
small. With regard to the rotating component that is moving in

the same direction as the rotor we can draw the Heyland circles

given at DCO. Hence, as far as this component of our impressed
stator field is concerned, it will necessitate the existence of a rotor

band of constant value represented by the line PG and a

magnetising band represented by OC. Now consider the stator

component that is rotating in the opposite direction, and form

Heyland circles for this. If a be the slip for the first component
and fl the angular velocity of either, the slip between the rotor
and the oppositely rotating component will be 211 cr. Hence if

<j be small, this new slip will be very large indeed, and thus the

point P in the diagram must be taken very near to D, and the

diagram will take the form of the smaller one shown at D&On
where 0^ is merely OP redrawn. It will be readily seen that
the rotor band corresponding to the backwardly rotating stator
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band is given by PA, and the magnetising band by 0& where
Cl divides DA in the same ratio that C divides DO. Now when
P! is very near Dlt PA and PA are almost the same in length,
hence not only will OP give the backwardly rotating band of

stator flux, but also the corresponding backwardly rotating band
of rotor flux. Hence to find the form of the rotor flux we can

proceed as follows. Draw two circles with their centres at and
with radii OP and OQ, OP being the backward rotor flux and

OQ equal and parallel to PG, the forward rotor flux
;
divide these

circles into equal parts, proceeding round the two circles in

different ways as shown by the arrows. Draw radii to the con-

secutively numbered points and find the resultant of these lines.

For example, when both current bands have turned through 300
the radii will be Oct. and OyS, and the resultant, giving the

position and value of the maximum of the rotor current band
at that moment, is Oy. It will be seen that the vector giving
the value and position of the maximum rotor current lies on
the elongated ellipse shown while the stator current runs up
and down the line XX^ The difference between this elliptical
band and the stator line will evidently be due to the magnetising
current band required for the rotor flux. The form of this band
in the present case will very nearly be given by a circle with
radius OG.

In the case figured the magnetising current is much larger
than is ordinarily the case. When it is small, it is evident that

the magnetising current will still more nearly be represented by a

circle, and the rotor ellipse will become flatter and more nearly
like the stator line. The less the magnetising current, the more

nearly will the two bands tend to have the same form.

Starting Apparatus. We must now see in what way the

rotor of the monophase motor is started from rest. In the case of

very small motors all that is necessary is to start the rotor running
in one direction by any means. The slip between the two fluxes

being different, a torque will result which will accelerate the rotor

more and more till it attains as nearly as possible the synchronous
speed. With motors of even quite moderate size this cannot be

done, since it demands a very large current from the mains. If in

any way we can produce a rotating field, even if it be non-uniform,
a starting torque would result. Let the stator be wound with a

second set of wires
;

if in any way it can be arranged that this

winding receives a current which is out of phase with that passing
through the ordinary winding, such a state of things will result.

Let one set of coils called the running coils be connected directly
to the mains as shown in Fig. 179, and let the other set,

called the starting coils, be joined to them through a switch
with a non-inductive resistance in series. The two coils have
in general different numbers of turns, the starting ones being

15-2
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wound smaller in size than the others to avoid waste of space.
Hence in the present case the circuit containing the running coils

only has a low resistance and a high reactance, while the starting
coils' circuit has a fairly high resistance and considerably less

reactance. Hence the currents flowing in the two circuits will

Running Coils

Startin Coils

Fig. 179. Fig. 180.

differ considerably in phase and a rotating flux will be produced.
When the appropriate speed is attained the starting circuit

is broken. Another way of attaining the same result (due
to Mr Heyland) is shown in Fig. 180. Instead of winding the

starting coils in slots of the same form as the ordinary ones a

special form of slot is provided. These slots are large and are well

enclosed by iron, and hence the leakage field they produce will be

large, and if the resistance be low the currents in them will lag

very greatly and will be greatly out of phase with the current in

the main coils, which will again result in a rotating flux : the two
coils are, as in the first case, put in parallel on the mains, and
the starting ones are cut out when full speed is attained. This

method has the advantage of occupying very little of the useful

working winding space, and gives a large phase difference between
the two currents.

Such starting devices can in all cases be supplemented by
providing in addition a wound rotor provided with slip rings and
a resistance as mentioned on p. 219. A motor with the Heyland
winding and these slip rings can be arranged to take but little

more current in starting than it consumes at full load, a very

important point in connection with regulation.

Cascade working. It will be seen that the relation between
the torque and speed of the rotary field motor bears a very close

resemblance to that of the ordinary shunt motor. In cases where
it is necessary to have a large starting torque and a variable

speed the former can only be got in this case, as we have seen, by
providing the rotor with an adjustable resistance which necessitates

a loss of energy. It is possible by means of altering the number
of poles of the motor to get several speeds of the machine, thus if
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the connections of a four-pole motor are rearranged so that it is made
into a two-pole one, it will run at twice the speed, but no continuous

speed variation can be produced other than by the wasteful method
of putting resistance in the rotor. With two motors another

solution is possible : the second machine can be arranged so that

its stator is fed from the rotor currents of the first, a method

corresponding in some respects to the ordinary practice of series-

parallel control with two series motors. The rotor of the first

motor, that on the mains, must of course be wound with a three-

phase winding of such a sort as to produce the desired pressure on
the stator of the second one. Such an arrangement of two
induction motors is called a cascade or concatenation one. Let us

consider the case where the motors are so connected mechanically
that they must run at the same speed, co, then if ft be the speed of

the field in the first stator, it follows that the speed of the field in

the second one will be II &>. Hence when the second one is

running synchronously with its own field so that its slip is zero,

we must have O &> = &>. Hence the synchronous speed for two
motors in cascade is half that of either. Further since the second

motor in this case is doing no work, as the slip is zero, the first

motor will be doing none also, and thus half speed will be the

limiting condition for no-load in cascade. For speeds below this

amount, resistance must be put in the rotor of the second motor, and
since an energy current will then be flowing into it, both motors
will produce a torque. When, by cutting out this resistance, the

half speed is attained, the second motor can be cut out of circuit,

and the first motor can again have resistance put in its rotor and

any speed up to nearly full synchronism attained. We thus have
two speeds attainable with practically full efficiency, the inter-

mediate ones being procured by means of resistances, and the

arrangement is thus somewhat like the series-parallel one with

direct current series motors. It has an advantage over this in the

following respect. While the car carrying the motors is running
at any speed above half synchronism, if the motors be put in

cascade, the second one will be running above its synchronous

speed, that is half speed, and will thus in general be in such a
condition as to be acting as a generator and can return power to

the circuit from the kinetic energy of the car for a considerable

range, this cannot be done well with the direct current arrange-
ment. One disadvantage is that during the cascade the first

motor is necessarily working on what is the equivalent of a very
inductive load, and hence the current will be much out of phase
with the pressure. It is only with the very highest class of motor
that this is not a cause of much difficulty. The stator must be

so built as to have the minimum possible leakage field and hence
the minimum allowable clearance. Again, except during accelera-

tion and stopping, the second motor does nothing and is only ?

dead weight on the car.



CHAPTER XIX.

METERS OPERATING BY MEANS OF A ROTATING FIELD.

SOME forms of alternating current instruments afford in-

teresting examples of the application of the principles of the

rotating field. In any integrating instrument it is necessary
that there exist two couples, one tending to cause motion of the

rotating part, the other tending to oppose that motion. When
these two couples are equal the rotating part will move with
constant velocity. In by far the great majority of cases the

opposing couple is produced by means of eddy currents in-

duced in the moving part, which generally consists of a metal

disc or cylinder. Such eddy currents are due to the rotation

taking place in a field due to permanent magnets, and hence the

retarding couple is proportional to the speed of revolution of the

Fig. 181.

disc. In order that the total work registered by the meter may
be proportional to the number of turns the disc makes, and may
therefore be measured by means of an ordinary counting mechanism,
it follows that the moving couple must be proportional to the

power supplied to the circuit to which the meter is attached.

Consider the apparatus shown in Fig. 181, which consists of a

set of stampings provided with four projecting poles, and a
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copper cylinder carefully pivoted coaxially with them. Let two-

of the poles, A and A, be wound with a few turns of thick

wire and placed in series with the circuit, L, in which the power
is required to be measured. Let the other two poles, B and B,
be wound with fine wire, and let this winding be arranged in

circuit with some inductive device so that the field produced by
these coils is in exact quadrature with that due to the series coils

when the load is non-inductive. Methods by which this condition

can be attained will be referred to later on. Then the assemblage
of poles, etc., practically constitute a simple form of two-phase
motor. We can show that the couple produced by this arrange-
ment on the pivoted cylinder is very closely given by the expression

.^ . cos \, where is the pressure at the terminals of the shunt

coils, ^ is the current in the main, and \ is the angle of lag
between the two, in other words, the applied couple is proportional
to the power taken by the load attached to the mains, and hence
the condition for operation of the meter is fulfilled.

Expression for the torque. We will assume, as in the

two-phase motor, that each flux is distributed round the gap
at any instant in a sinusoidal manner, and from the manner
in which the poles are placed, if one varies as the sine of the

angular position, the other will vary as the cosine of the same

angle. We will also suppose that the value of the fields at

the mid points of the two sets of fluxes also varies in a simple
harmonic manner with the time. Consider first that the circuit

to which the meter is attached is non-inductive. The main
current, passing round the coils AA, will produce in them an*

alternating flux which will be proportional to the current since the

principal part of the magnetic circuit is air, and will lag slightly
in time by the small angle of hysteretic lead referred to on p. 48^

If the shunt coils are merely joined by means of an ordinary-

resistance, in the same way, the current in the coils BB will be

proportional to the pressure and will lag after the pressure by an

angle dependent on the relative values of the resistance and the

self-induction, the field resulting will (as before) again lag a little

more, due to the hysteresis. If instead of simply connecting the

coils by a resistance some inductive device be put in series, the

field produced by the current due to the pressure will still be

proportional to that pressure, but the phase angle can be so

arranged that this shunt field is exactly in quadrature in time

with that due to the series coils. Hence if we assume that the

series current is distributed in space as the sine of the position

angle, 0, round the gap and that its field varies in a simple
harmonic manner with the time, we can write it, <J>a sin pt . sin #,

where 4>a is its maximum value, which is proportional to the
current flowing. In the case we are considering, that of non-
inductive load, the flux due to the shunt coils will of necessity be
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distributed in space according to the cosine of 0, but instead of

varying as the sine of the time angle, the inductive device is so

arranged that the phase is altered so that it varies as the cosine of

the time, hence it can be expressed by <J>6 cos pt . cos 0, where <J>6 is

proportional to the pressure on the terminals. The nature of the

inductive devices will be gone into later on.

Now let the load be inductive so that the current lags on the

pressure by the angle X; it is now evident that the expressions
for the two fields at any angle and any time t will be given by
<E>a sin (pt X) sin and <l>6 cos pt . cos 0.

The working out of these expressions is simplified if we write for

X the angle 2 a, and since the instant from which time is reckoned
is of no moment, the above can be written in the forms

4>a sin (pt a) sin and < 6 cos (pt + a) cos 0.

Hence the field, <l>, at any point is given by the sum of the

above. This can be reduced as follows :

4> = <J>a (cos a . sin pt . sin sin a . cos pt . sin 0)

(cos a . cos pt . cos sin a . sin pt . cos 0)

,cosa
{cos (pt

-
0)
- cos (pt + 0)}

<i>a . sin a
sin (pt + 0)- sin (pt

-
6)}

y5- {sin (pt
-

0) + sin (pt + 0)}

cos (pt 0) (

~ a

^

^

j
cos a + cos (pt + 0) f ^

b

J
cos a

/<|> _<j>,\ t /^>6 4-<j> \

+ sin (p 0) ^ sin a sin (> + 0) ^ )
sin a.

Thus <i> contains four terms, each representing a circular rotating

field, for two of these pt Q and for two pt = 0, that is -y- =_p for
ctt

7/3

one set and -y- = p for the other set.
(Jit

Hence the actual combination of fields is equivalent to four

rotating circular fields, two rotating one way, and having the

a
-

,maximum values ^
- cos a and-= sin a, and two rotating

- -

in the opposite way having the values

4>6
- Oa , <I>6 + <t>a .

^ - cos en and - -- sin a.
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If the cylinder be at rest, so that the slip between it and each

field has the value p, each field will produce a torque proportional
to the square of the maximum, hence the forward torque will be

proportional to

J {(4>a -f <I>&)
2 cos2 a + (<&a

-
^&)

2 sin2

a},

while the backward torque will be proportional to

J {(4>6
- 4>a)

2 cos2 a + (4>a + O6)
2 sin2

a}.

The nett torque is the difference of the two that is given by
< a 4>6 (cos

2 a - sin2
a), or <J>a 3>0 . cos 2a, or by <J>a 3>6 . cos X, since

X = 2a.

But we have 4>a proportional to VH, and <E>
fe proportional to

,
hence the torque applied is proportional to the mean power

taken by the load, and thus the condition for the meter to work

accurately is fulfilled.

When rotation of the cylinder takes place, the slip between the

two fields and the former is no longer the same, it is less than the

angular velocity of the fields for one of them and greater for the

other, hence the couple is no longer accurately given by the above

expression : in general the number of rotations made by the

cylinder is a small fraction of the alternations of the pressure (that
is of the revolutions per second made by the fields), and hence this

error is but small.

Sliding field meters. Assuming that it is possible to obtain

two such fluxes as we have just considered differing in time-phase

by being in quadrature, it is easy to see that equivalent constructions

can be arrived at in which the poles do not travel round a complete
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maximum the poles P are north and the pole P2 is south, whilst

the conditions are just reversed with a negative flux. The series

coils are not wound on an iron core, but the direction of winding
is such that with a positive direction of flux due to these coils Pa

is equivalent to a north pole, while P4 is a south one and vice

versa. Hence it is evident that the whole arrangement is equiva-
lent to a portion of a crown of poles forming the winding of a two-

phase stator, and hence the resultant field will move through a

distance equal to that between the poles PjPj in one alternation

of the currents flowing, since from the position of the two fields

the zero point for the shunt flux is the maximum one for the

series flux. It follows that the condition of affairs with respect
to a disc pivoted so a& to be capable of rotation in the plane DD
will be exactly the same as that of our cylinder in the last case.

Hence, if an eddy current brake be employed, the total revolutions

of such a disc will measure the energy supplied.

Again, consider the magnetic circuit shown in Fig. 183
;
the

top part is wound with the shunt current, the lower pole with

the series current. The flux produced round the magnetic circuit

by a current in the series coil will pass across the gaps gg and

Fig. 183.

will result in the pole P3 being alternately north and south.

The flux due to the shunt windings will pass, for some definite

direction of the shunt current, in the manner shown by the arrows,

partly passing directly across the gap G and partly across the two

gaps gg. It will readily be seen that the pole Pl will vary from

north to south while the pole P2 varies from south to north.

Thus, suppose the shunt flux to be at its maximum in some
definite direction, the flux due to it will be somewhat as shown
in Fig. 184. If the relative time-phases of the shunt and series

fluxes be properly adjusted, the series flux will be zero at that

moment, and hence Fig. 184 will show the total distribution of

flux in the gap, gg, at that instant. When the shunt flux is zero,

the series one will, under these circumstances, be a maximum,
and the flux in the gap will be as in Fig. 185. Again, when the

flux .due to the shunt attains its maximum value in the opposite

direction, the gap flux will be as in Fig. 186, while lastly when
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the series flux has its maximum opposite value, it will be as in

Fig. 187. Hence the flux shifts, as before, across the gap in the

direction of the arrows once per alternation. Thus, as in the last

case, we can apply the principles proved for the first case.

Fig. 184. Fig. 185. Fig. 186. Fig. 187.

The last two methods of producing a sliding flux are due to

the Westinghouse Company, the last being that employed in their

latest meters
; the first method described is employed by Messrs

Siemens and others.

Inductive devices. We must now see what methods are

adopted to ensure that the two fluxes due to the series and
shunt circuits shall be in quadrature, and we will first take
the arrangement used by Messrs Siemens for the type of in-

strument shown in Fig. 181. Let two circuits be placed in

parallel as shown in Fig. 188, and assume that they have exactly

L Q R V

L Q/
Tnnnnnnr

'

Fig. 188. Fig. 189.

the same resistance and self-induction. In Fig. 189 is drawn the

corresponding impedance triangle, which is evidently the same for

each circuit. It follows that if the circuits be so arranged that

the resistance is practically confined to one portion of each circuit

and the self-induction to the other, the points Q, Ql of connection

of each of the two portions will at any instant be at the same

potential. Now arrange the circuits as shown in Fig. 190. The
vectors will have the same lengths and inclinations to the impressed
pressure line as before, but they must now be drawn as shown in

Fig. 191, where OP is the vector for the impressed pressure on
either circuit, OL is that for the maximum pressure existing at the
terminals of the pure resistance part of the one circuit (that is,

is equal to the current, <&, carried by that circuit multiplied

by the resistance, R, of the same, or is &R), while the vector PL
measures the quantity plffi for the inductive part of the circuit.
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As regards the second circuit, the vector for the quantity
must be drawn as at L^P, while that for the quantitypL^ must be
drawn as at QL^. Hence it follows that the vector LL^ will

represent the maximum value of the pressure between the points

Fig. 190. Fig. 191.

Q, Qi in Fig. 190. Now whatever be the values of the resistances

and self-inductions of the four parts of the circuit, the points L
and ^ will always lie on a circle drawn with OP as diameter,
hence by suitably arranging the values of these quantities, we can

get any desired angular relation between OP and LL-^. Let the

points PP be connected across the mains and the points QQi be

joined to the terminals of the shunt winding shown in Fig. 174.

Then we can so arrange matters by adjusting one or more of the

coils, that the flux due to the current impelled by the pressure
between QQ-i has any desired angle with reference to the vector

OP and hence with reference to the field impressed by the series

coils. In particular it can readily be arranged that these two
fields are in quadrature when the circuit to which the instrument
is attached is quite non-inductive, which is the required relation

that has to be fulfilled.

Exact adjustment of quadrature. In the cases referred

to in Figs. 182 and 183, a very approximate quadrature relation

between the shunt field and shunt pressure can be produced by
a choking coil action. In Fig. 175 the shunt circuit would be

capable of producing but a small back E.M.F. if it contained only
the stampings as shown, and in this case an additional choking
coil with an air gap is provided. In Fig. 176 the main flux

passing across G is sufficient to enable the choking action to

be provided without such an auxiliary coil. In both cases, however,
the quadrature relations will not be accurately fulfilled, and this

point must now be considered.

Take the case where the load is non-inductive and let V and
OC (Fig. 198) represent the pressure and current. In an ideal

case the current OC would produce a flux OFC in phase with it
;

again the flux crossing the gap g, (Fig. 176), is only a portion of the
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total flux passing round the circuit due to the shunt winding. Hence
if there were no losses in hysteresis in the iron or by resistance in

the shunt winding the flux across g would evidently be in

quadrature with the pressure 0V as shown at OFV ,
since the

induced pressure in the shunt, which is given by OE, is the only

pressure that the applied shunt pressure has to deal with. In

Fig. 192. Fig. 193.

such a case the condition of quadrature between the flux, 4>c ,
due

to the series winding and the flux, 4>r ,
due to the shunt one would

be fulfilled. In the actual case matters are in a different position.
The magnetic circuit is an iron one, and hence losses occur in

hysteresis, and further there will be a small loss of pressure in the

shunt coil. Consider first the action of the current given by 00
in Fig. 193. As far as its connection with the iron circuit shown
in Fig. 183 is concerned, it forms with it a choking coil : on p. 40 it

was seen that in this case the effect of the hysteresis was to produce
an angle of hysteretic lead between the current and the flux,

hence the flux will lag after the current by that angle ; as shown
on p. 51 the presence of the gap causes this angle of lag to be

reduced to a greatly smaller value than would have been the case

without the gap, but it has still a definite, though small, value.

Now consider the shunt pressure OF as acting on the same
circuit to form a choking coil. When resistance is taken into

account, the flux produced is no longer in quadrature with

the pressure but inclined at an angle less than 90 as shown
at OF'?. Hence in the case taken, when the pressure and current

are in phase, their corresponding fluxes are not in quadrature as

they should be. Now let a little coil of wire be placed as shown
at S on Fig. 183, the ends being connected by a short piece of wire,

so that the resistance of the local circuit thus formed can be

adjusted at will. The shunt winding now forms with this a little

transformer instead of a mere choking coil : but from the form of
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the iron circuit and the positions of the shunt coil (or primary of

the transformer) and little extra coil (or secondary of the same),
it is evident that this transformer is a leaky one, and hence the

flux relations developed on p. 61 will hold. A reference to that

page will make it clear that by suitably adjusting the current in

the secondary, that is, by adjusting the resistance in the little

coil's circuit, we can cause the angle between the pressure vector

for the applied pressure and that for the flux in the gap, g, to

have a considerable range of values, in particular this angle can be

caused to be greater than 90. Hence by this adjustment it is

easy to cause the flux vector, OFV ,
for the shunt circuit to lie at

such an angle with the pressure vector, OF, that it is at right

angles to the vector OFC as shown at OFV . This adjustment is

extremely simple in practice, and hence the method just described

for procuring the desired quadrature between the two fluxes is

one of great importance.

This manner of adjustment for phase difference can be applied
to any form of meter in which the magnetic circuits are such as to

permit of the application of the little extra coil, in particular it

can be used in the form described on p. 233; it is only necessary to

place such a coil on some part of the horizontal part of the shunt

stamping.

Polyphase circuits. In the case of polyphase circuits a

meter could be employed of the types just described. But
another method is possible. Take the case of a two-phase

system, the current in one main is in quadrature with the

pressure between the ends of the other mains when the load

is non-inductive. Hence if we can arrange matters so that

the shunt circuit of the meter is practically non-inductive and

place it across one pair of mains, and then place the series

coil in one of the opposite pair of mains, it will readily be seen

that the required quadrature of the two fields will be very nearly
attained. Hence, provided the load is balanced, such a meter
would indicate correctly for any power factor. Similarly we can

utilize the fact proved on p. 150 that in any three-phase system with

balanced and non-inductive load, the current in any main is in

quadrature with the pressure between the opposite pair of mains.

Wattmeter. Instruments of this type can readily be used as

wattmeters. All that is necessary is to provide the rotating disc

with a suitable control, such as a spring; a pointer fixed to the

disc, and moving over a scale, will then evidently give a reading of

the power.

Phase meters. An interesting application of the principles
of the rotating field is to a class of instruments called phase
meters, the object of which is to show the phase angle between
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the pressure and current or, preferably, the power factor of the

same. Suppose that we have a stator of an induction motor fed

with alternating polyphase current and consider for simplicity that

the phases of the winding are fed by the currents in the mains,
and that the load carried by those mains is balanced. Let the

space where the motor should exist be filled with stampings

simply, and no winding be on them. Then if one of the currents

is given by c = Csinpt it will follow, from what we have seen

concerning the induction motor, that there will be a rotating
field produced in the air gap which can be represented by
</>
= <!> cos (pt 6) when the currents and space distributions are

sinusoidal, being the space angle of this flux. Now let the

pressure on the terminals of the pair of mains concerned in sending
the current above considered be given by e = E sin (pt + i/r)

where ty is its phase angle relative to that current, and let this

pressure send a current through a coil pivoted without any control

in the air gap of the stampings, this coil having a non-inductive

resistance R in series. The current in that coil will then be

The couple that will be at any instant exerted on the coil will

be the product of the flux into this current, and hence the mean

couple will be given by
1 E4>

[
T

T R Jo

This couple will vanish when the integral is zero, which leads to

I (sinpt cos
i|r + cos pt sin

i/r) (cos pt cos <f> + sin pt sin <f>)dt
= 0.

Jo

Hence we immediately derive

sin
>/r

cos
(/> + cos

i/r
sin

(/>
= 0,

since the integral of the product sin pt cos pt vanishes, while those

of sin2/> and cos-pt are equal. Thus sin (< + i/r)
= 0, that is

<f)
= -

-fy.
But since the coil has no control it will move itself into

such a position as to correspond to this relation being fulfilled, or

to one showing the phase angle of the current directly. Should
the flux not follow the assumed sinusoidal space distribution, it

will still be the case that the coil will take up a definite position
for a definite value of

i|r
even though its position is not such as to

give the value of ty directly. In fact it is not desirable that this

should be the case, since the quantity that is desired to be indicated
is the power factor and not

i/r.

Such instruments can be made either with or without iron

cores, in the latter case the current from the mains is sent through
one fixed coil, and the pivoted coil is a triple one, connected to

the three phases across the mains.



CHAPTER XX.

ARMATURE REACTION BY SYNCHRONOUS IMPEDANCE.

In-phase case. The first point to be considered is the direct

action of the current in the armature on the impressed flux

produced by the field magnets. In Fig. 194 three successive crowns
of a field magnet are shown, the arrows on the poles showing the

direction of the flux produced. Below them are shown three coils

of an armature which, for the sake of simplicity, is taken as being
wound in the concentrated manner, the direction of flow of the

current being shown by the arrows on the coils, and that of the flux

thereby produced by the arrows in the air gap. If the rotation be
as shown by the large arrow, and if the armature be drawn at the

instant the E.M.F. is a maximum, it will occupy the position shown
in the figure. Let us suppose that the whole circuit on which
the armature is working is devoid altogether of self-induction,
then since the current will then be exactly in phase with the

E.M.F., the same position will correspond to the instant at which
the current is also at its maximum. Now imagine that the

armature is at rest in this position and that we send through it a

constant current of the same amount as the maximum alternating
one that is actually flowing, this current would tend to produce a

magnetic flux of its own in addition to that which the field

magnets are sending round the circuit. It will be seen that in

this non-inductive case, the field that the armature carries will at

the instant of maximum cause a weakening of the flux in half the

polar face of each pole and a corresponding strengthening of the

other half, somewhat as is shown in Fig. 194. This effect is similar

to the cross-magnetising effect of the armature of a direct

current machine, and unless some alteration in the permeability
of the pole faces takes place owing to the alteration in distribution

of the flux, the total nett flux from the poles will not alter in

amount from this cause but the flux distribution will only be
distorted in shape ;

the same effect must occur at the instant the

alternating current is a maximum.
Now consider the armature to be rotating with the current

flowing, as it moves along it will be continually carrying a less
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and less current till at the moment the coil is opposite the pole,
the E.M.F. (and in this case the current also) will be zero, and
hence no effect will be produced on the flux. From this moment
the next following coil will perform an exactly similar cycle of

effects, since it will be replacing the first one from instant to

instant. It follows that the armature current will cause, or tend
to cause, a pulsating distortion of the flux issuing from the poles
without materially altering the total flux therefrom, and that this

pulsation will take place at twice the period of the current, since

the time for one coil to get to the place occupied by the previous
one is only half the periodic time of the current.

Inductive case. Now let the armature be working on a
circuit of very large self-induction, so that the lag is nearly 90.
The E.M.F. will still be at its maximum when a coil is between two

poles, but owing to the lag it will not be carrying the maximum
current till it gets opposite the pole, since the distance between

Fig. 194.

two poles is 180. Thus the coil (1) will still have its maximum
E.M.F. at the position shown in Fig. 194, but the current will

not be at its maximum till the coil has moved on to the position
shown in Fig. 195. As before, consider the effect of the corre-

sponding direct current, the armature being at rest. It will be

Fig. 195.

seen that the current flows in such a direction as to oppose the

magnetising effect of the field magnet's winding, in other words it

tends to demagnetise the circuit. When the armature rotates,

generating an alternating current having this position in space, it

will likewise tend to demagnetise, but the effect will be a pulsating
one in the same way the cross-magnetising one was, and it will

pulsate also with a periodicity twice that of the current itself,

but still the average effect of the alternating current will on the
whole be a demagnetising one. It should be noted that the
current has its biggest values just in the place where it is so

L. 16
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situated as to produce the most effect as regards alteration of

the main flux.

Leading current. Now let the current be one which leads

the E.M.F. by nearly 90. Instead of the coil (1) being opposite
the pole at the instant of maximum current it follows from what
was before said that the coil (2) will be in that position, and hence
it will be readily seen from Fig. 196 that a leading current will

increase the flux produced by the field instead of diminishing it.

Fig. 196.

For lags or leads between zero and quadrature the effect will be

a combination of the two cases. A current lagging less than 90
will both cross magnetise and demagnetise the poles while a

similarly leading one will both cross magnetise and increase the

flux. We may say that the cross-magnetising will be proportional
to the component of the current that is in phase with the E.M.F.

and the demagnetising effect or the increased magnetising effect

will be proportional to the component in quadrature therewith.

These points must be borne in mind when we come to consider

the case of the synchronous motor.

True Reactance of Armature. The armature thus pro-
duces a direct effect on the flux impressed on it by the field

magnet, but in addition it can produce a specific effect on itself

due solely to the current it is carrying and otherwise independent
to a large extent of the action of the field magnet. For when a

current is flowing in the armature it will produce a leakage flux

in the surrounding space, principally through paths in the air,

which flux will be therefore almost proportional to the current

flowing : this flux is the same in nature as the leakage flux of a

transformer or induction motor, and can, as in those cases, be
looked upon as endowing the armature with a true reactance or

self-induction. This flux will therefore produce a definite E.M.F.

in the armature which will be in quadrature with the current

producing it and will be proportional to that current.

The Synchronous Reactance. Since the armature effect

is not only complicated in action but varies from instant to instant

with twice the period of the current, it is evident that even an

approximately correct consideration of the complete reaction of

the armature, such as will be taken later on, must lead to some-
what lengthy constructions. For the purpose of further elementary
discussion the usual assumption will at present be made, namely
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that the whole effect of the armature current can be taken as being
representable by considering it to possess a definite constant
reaction in the ordinary sense, which reactance is called the

Synchronous Reactance and can be determined as follows.

First short-circuit the armature by an ammeter, run it at

its normal speed, or nearly so, and apply different currents to the
field magnets, reading in each case the armature current and the
field current

;
in this way a curve can be obtained which is

called the Short-circuit Characteristic : the current taken from
the armature can be considerably more than its normal full load

current. Such a curve for a small machine is shown in Fig. 197.

Now let the armature be open-circuited and let a voltmeter be

placed across the terminals and take, at about the same speed,
simultaneous readings of the exciting current and the pressure

JZ 3 4 5 6

Exciting Current in Amperes

Fig. 197.

thereby produced. Such a curve is called the Open-circuit
Characteristic or Saturation Curve, and the pressure produced at

any exciting current is known as the corresponding Nominal
Induced E.M.F. In Fig. 197 is drawn so much of such a curve as

corresponds with the range of current in the corresponding short-

circuit test. The whole curve will evidently have the same form
as the curve of separate excitation in a direct current machine,
that is, will roughly correspond in form with the iron reversal

curve. Such a complete curve is given in Fig. 209.

For the ranges of current usually employed in a dynamo, the

short-circuit curve is nearly straight, and in many cases, as the

present, over the same range of exciting current the saturation

curve is also straight. At any desired value of the exciting
current let ^ be the value of the nominal induced E.M.F. and ^
the current on short-circuit. Evidently the ratio of the two is the

162
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value of some impedance which we will call the synchronous
impedance, or shortly the impedance of the armature, this will, in

the present case, be a constant quantity ;
let it be denoted by /.

Then if R be the true ohmic resistance of the armature and S a

quantity called the synchronous reactance we evidently have
P =R2 + S'

2
,
from which S is readily found.

In the example the ratio of <^ to ^ is about 0*85 and as the
resistance was about one ohm, the value of S is about 0*84, the

angle between the nominal induced E.M.F. and the current in the
short-circuit case being about 83J. In modern machines of any
but very small sizes the resistance is small compared with the

reactance, and hence the result of the test may be taken to give S
directly ;

in such case the angle between the pressure required to

force any current through the armature and that current is nearly
a right angle. It follows then that in the present test the current
can produce its maximum demagnetising effect since it lags nearly
90 after the E.M.F. Furthermore the E.M.F. due to any leakage
field in the armature must be in quadrature with the current in

phase, and hence in this case both the demagnetising effect of the
armature and its true reactance effect will be nearly in phase with
one another.' The assumption made that S is a constant for all

conditions of operation is manifestly untrue, since, as we have seen,
the demagnetising effect will be nearly absent in certain cases, in

fact the assumption leads to worse results than those actually
found for a given dynamo.

It may be noted that it is not necessary that either of the
above curves should be taken at exactly the right speed ;

in the
first the E.M.F. at a given current will be proportional to the speed
and hence the ordinates can be easily corrected. In the second
one since the impedance of the armature is nearly all due to the

quantity S it will be proportional to the speed, as will the

corresponding value of the E.M.F. acting, hence the speed need not
be kept quite constant at a given value throughout the two tests.

Instead of following in detail the exact effect that the armature
has, both on diminishing and distorting the impressed llux and in
the possession of a true leakage E.M.F., we will make the assumption
that the effects can be accounted for by considering that the machine
possesses (1) a definite E.M.F. due to a constant current round the

fields, which is called, as before stated, the nominal induced E.M.F. ;

(2) a definite and constant impedance in the armature consisting
of the two parts, R the resistance, and S the synchronous reactance.
On these assumptions we shall see how the external characteristic
can be found.

The External Characteristic. Let an alternator excited
so as to produce a nominal induced E.M.F. of the amount be
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connected to a circuit such that the angle of phase difference

between the current in that circuit and the terminal pressure
thereon is X.

Let 0(7, Fig. 198, be the vector for any current flowing, and cut

off from it the part OR equal to the product of that current into the

armature resistance, this represents the ohmic drop in the arma-
ture ; then draw RL perpendicular to this and of the length equal
to the value of S .<$, where S is the equivalent reactance. The
line OL will represent the pressure required to force the current

Fig. 198.

through the armature
;
the angle LOR is a constant one which we

will denote by a. With a radius equal to the nominal induced

E.M.F. describe a circle and draw the line OX making with the

current the proper angle, X, for the phase difference between the

terminal pressure and the current in the outside circuit. From L
draw a line parallel to this to cut the circle in E and draw EV
parallel to OL. It is evident that V is the terminal pressure, ,

for the particular current taken. By proceeding in this way the

external characteristic can be found for any required power
factor.

The equation to the characteristic can readily be found. For
from the triangle OEV we evidently have

which shows that the relation between <^ and ^ is represented by
an ellipse. For the purpose of discussion it is more convenient to

use the letter ^ for the product *2f . /, so that & is proportional to

the current, and to consider the relation between this quantity
and So. It is evidently just the same in form as the external

characteristic since / has been taken as a constant. With this

notation the equation to a characteristic is
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From the form it is evident that the origin is the centre of

the family of ellipses represented by the equation when the

parameter X is altered. The following points can at once be seen.

The axes of the ellipses are on the line at 45 to the given axes

(Fig. 199). Also when a = X the ellipse becomes the straight line

g= Q + &, and when (a X) = ~- it becomes the circle * = * + ^/ 2
.

Further when cos (a X) is positive the ellipses lie between the

line and the circle, when negative outside the circle.

In an ordinary case we saw that a is nearly a right angle, and in

this case the above statements lead to the following results : when
X is a right angle, or the load is entirely inductive, the characteristic

X
Fig. 199.

is the straight line, when X is zero, or the load is entirely non-

inductive, the characteristic is the circle, for positive values of X,

that is for any inductive load, the characteristic is one of the

ellipses lying between the line and the circle, while when X is

negative, or the current leads on the pressure, the characteristic is

one of the outside ellipses.

We thus see that the assumption of a constant equivalent

synchronous impedance leads to practically the same result as

that which we saw must follow for the actual reaction of the

armature, namely an increased fall of pressure over and above that

incident to ordinary ohmic drop in the case of an inductive load,
and a possible increase in pressure when the load is a leading one.

Hence this assumption can be taken as giving a first approxima-
tion to the actual condition of affairs, and from its simplicity is a
useful one to take for future considerations.

In the case where the current is used instead of the quantity& for the abscissae it is evident that all the characteristics,

including that for non-inductive load, will on this assumption be
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ellipses, with the sole exception of that for a highly inductive-

load, since the scales of the ordinates and abscissae are then
different. In Fig. 200 is given the true external characteristics of a
machine for the two cases of non-inductive and highly inductive

Current

Fig. 200.

loads, drawn in full lines, and the corresponding ellipse and

straight line derived from the assumption of a constant syn-
chronous reactance are drawn in dotted. The errors involved will

be readily seen. The full determination of the characteristic will

be undertaken in Chap. XXI.

For the sake of continuity it will be desirable at this point
to take the case where such a machine as we have been con-

sidering is supplied with current instead of generating it, or in

other words is producing motor action in the way that will be
more fully considered in Chap. XXIII.

Motor action. Refer to Fig. 194 on p. 241 and let the
armature be rotating in the same direction as before, but let

the armature currents be flowing in the opposite direction to the

arrows on the coils. Then the effect of the currents in the

armature is evidently such as to give a set of forces which act in

the assumed direction of motion, and the machine will then be

operating as a motor; further, since it will be running at the

speed corresponding to the impressed periods of the pressure on
the terminals, it is called a synchronous motor. Owing to the

armature cutting lines of force, an E.M.F. will be generated, and the

direction of this E.M.F. will be as shown by the original direction

of the current arrows on the armature since the direction of

the flux and of the rotation are the same as before, hence the
E.M.F.s will be on the whole in the opposite directions to the
currents flowing or will form a counter E.M.F. T e relations are

quite similar to the direct current case, and as ' that case the
difference between the applied pressure and the -ck E.M.F. mu^t



248 ALTERNATING CURRENTS

be just enough to force the current through the armature, in this

case, however, against the impedance instead of the resistance of

the same.

In order to get a general idea of the effect of the armature
current on the field let us, as in the case of the dynamo, assume
at first that the complete circuit has but little impedance, then
when the current is a maximum, so will be both the pressure and
the E.M.F., and it follows that the armature currents will only distort

the field, but since the currents are in the opposite direction the

distortion is just opposite to that in the dynamo. Now let the
current lag 90 after the pressure. The maximum back E.M.F. will

of course be still produced when the armature is midway between
the poles as in the first figure, but it will be seen that the

armature must move forward 90 in electrical degrees before the

current has attained its maximum and hence coil (1) in the first

figure will occupy the new position shown in the second figure at

the moment its current is a maximum. But since the current

arrows have been reversed, it will be seen that the direction of

that current is then such as to tend to increase as a whole the flux

in the field, and thus in the motor a lagging current, that is one

lagging on the impressed pressure, increases the field and hence
the E.M.F. produced by the motor. In exactly the same way a

consideration of Fig. 196 will show that a leading current tends to

demagnetise the field. These two effects are thus exactly opposite
to what occurs in the dynamo.

Just as in the case of the dynamo the true effect of the
armature current is a complex one, being partly due to the direct

effect of the current in it on the field, and partly due to the

presence of a true self-induction or linkage of lines with its own
circuit alone

;
for rough purposes these two effects can be merged

as before in a single term, the synchronous impedance.

Case of constant load. We have seen that the character-

istic of the dynamo will depend on the nature of the load when
the nominal induced E.M.F. is a constant, and it will be of interest

to inquire how the value of that E.M.F. must be altered if it be

required to investigate the relation between it and the current
when a definite load is to be supplied at constant terminal pressure,
but the load can vary in regard to the angle of phase difference

between the current and the terminal pressure. Let the line OF
(Fig. 201) represent the constant pressure and let the load be taken
>at first as non-inductive. Then the current vector will be in the

(same direction as the line OF and may be taken as 01. The

"'.mpedance of the armature, J, will require a pressure of the
ajaount ^./ to. force the current <$ through it, and the direction of

vector will -pake with that of the current vector the constant

igle a above \ferred to, which is such that its tangent is S/R.
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Let this line be VE drawn from the extremity of V. Then OE
is the E.M.F. that the dynamo must give. Suppose that the same

power is being delivered but with the angle of lag, X : then the

vector for this new current will be in the direction drawn at the

angle X to 01 and its length will evidently be such that 01 is its

projection, hence if IIl be drawn perpendicular to 0V from / the

current for the same power, but with the angle of lag X, will be

Fig. 201.

represented by the vector O/i. To determine the corresponding
nominal induced E.M.F. draw the line VEl making the same angle,
a, with the new current vector OIi that the former one VE did

with 01, and take the length of VE^ as being equal to the

impedance, /, of the armature multiplied into the new current 01\.

Then the vector OEl will give the necessary nominal induced E.M.F.

in order that the terminal pressure may have the same value for

the same load. If EE be joined we can easily see that the point
E always moves on a straight line. For, from the construction,
the sides VE and VEl of the triangle VEEl are proportional to

the sides 01 and 0/j of the triangle OIIl and the angle between
the respective sides is the same, hence the two triangles are

similar, and thus since / moves on the line IIlt E will move on the

line EEl} and this line makes with the line OF the angle i^
a.

).

With a leading current, such as is shown by the line OI2 , the same
construction can be followed out, and the result is that the E.M.F.

vector, 0^2, falls on the other side of OE. Hence the current will

lag or lead on the pressure in this case depending whether the

extremity of the E.M.F. vector falls to the right or left of

point E.
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It also follows that for each value of the power demanded from
the machine will correspond a line such as EE^\ this set of power
lines can readily be drawn as follows : determine the current *$

necessary to supply different powers when the lag is zero and set

off on the line VE (Fig. 202) distances equal to the value of ^ . J.

Through these points draw a set of lines perpendicular to VE and

Leading Currents
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to be 100 amperes. It will follow that if we set off a distance

from A equal to the product of the impedance into the in-phase
current, namely 50 x 0'84 or 42 volts, a circle drawn with
this as radius will cut AB in the point B such that the line

perpendicular to AB is the power line for 5000 watts. On the
same direction set off pressures such that each is the product of

the currents given in the diagram and the impedance, and draw

100

^dO

k
so

^70

I
60

$50
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constant excitation be the sole impressed E.M.F., the terminal

pressure cannot remain constant. The required condition of

constant terminal pressure may evidently be produced by regula-
tion of the exciting current in such a way as to produce constant

terminal pressure, the regulation being either effected by hand or

by some form of automatic gear. Such a method is not the most
desirable since in general some time must elapse between the

alteration of terminal pressure and the adjustment of the excita-

tion. It is thus necessary to provide something analogous to the

compound winding of a direct current generator, that is, in addition

to the fixed constant excitation provided by the ordinary direct

current winding on the poles, we must have a second source of

excitation which will increase with the demand for increased

pressure as the amount and character of the load varies. In an
ideal form of such regulation the increased excitation would be
of such an amount as to produce constant terminal pressure for

all possible variations not only in the amount of the load current

but also in the power factor of the load, and it would also be

instantaneous in its action so as to prevent even momentary
variations in pressure during the periods of adjustment. The
latter condition cannot usually be exactly complied with, since

even if the necessary alterations of excitation be practically in-

stantaneous, the eddy currents in the field magnets that will

accompany the corresponding changes of flux must of necessity
cause more or less delay in the response of the flux to the alteration

in excitation. Many solutions of the problem have been proposed,
but the following will serve as examples of methods of attaining
the desired result with more or less closeness.

Current Transformer. One very usual method, which
has long been employed, is that used in the Westinghouse
machines and is illustrated in Fig. 20-4. In this case the frame-

work of the armature carries a transformer having as many
primaries as there are phases ;

in the figure, which refers to a

three-phase machine, there are three such primaries. These are

put in series with the three armature circuits on their way to the

collecting rings. If the secondary of such a transformer were
connected to any ordinary circuit the current therein produced
would evidently be an alternating current which would practically
have its value equal to the mean value of the current in the three

mains. Such a current would be of no utility for the purpose of

compounding, but if by any means we could put a commutator in

series, the alternating current could be turned into a unidirectional

pulsating one as shown in Fig. 205, and if this were supplied to

a second winding on the magnets, they would experience a

pulsating magnetising force which would be proportional to the

current carried by the armature, and their magnetism would thus

on the whole be increased in proportion to the load. Such a



ARMATURE REACTION 253

simple form of commutator is however inadmissible, for the setting
of the commutator would evidently have to be very accurate indeed

in order to just invert the connections at the instant of zero

11 2OOO

t
SEPARATELY
EXCUEO HELD

DIAGRAM OF CONNECTIONS FOB COMPOUND WOUND
THREE-PHASE ALTERNATOR.

Fig. 204.

current, further this zero would evidently alter with the power
factor, since the commutator would be fixed to the shaft of the

machine, and hence preserve a definite angular relation to the

position of the poles, that is to the E.M.F., and not to the current.

Fig. 205.

To avoid these difficulties, and also to give the possibility of

varying the amount of compounding due to the pulsating series

current, the commutator is altered as shown in Fig. 206, which
refers to a two-pole machine for the sake of simplicity. Instead
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of the simple reversing commutator that would be required for the

last case, the commutator itself consists of two equal arcs insulated

from each other, with the secondary of the transformer attached to

the two halves. On this commutator press two sets of brushes, fixed

for any definite state of the main outside circuit, but capable of being
moved both as a whole, and also as regards the relative position of

the two component brushes of each pair. The two brushes of each

pair are connected, and across the pairs is put the extra winding
in which the transformed pulsating current is required to flow.

It will be seen that as the commutator with its attached secondary
revolves round, the current from the latter can flow round that

winding while the angle a is traversed, but that both the winding
and the secondary are short-circuited while the angle {3 is being
traversed. Hence it follows that if the brushes in each pair are

Fig. 206.

set exactly alongside so that a = 180 and the whole set is put in

such a position as to exactly reverse the current when it has its

zero value, the case is the same as the last. On the other hand, if the
brushes in each pair are so placed as to make a = zero, or ff 180,
the secondary and the winding will be always short-circuited and
no extra effect will be produced. For intermediate conditions it

is evident that it will be possible to so arrange the angles that the
extra effect due to the pulsating current in the secondary has any
desired value between the maximum one and zero. The extra

effect desired evidently depends on the power factor of the load.

For with a definite current flowing on the armature larger drops
will be produced with a low power factor than with a high one, as

will be seen from the consideration of the characteristics on p. 246.

Hence the relative positions of the component brushes must be
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arranged to suit the load, and for any considerable variation of the

power factor, any setting that has been made will no longer be

suitable. It follows that this system is principally of value when
the load has fairly constant power factor or consists principally
of lighting load with a comparatively small proportion of motor

load.

We have thus seen that the alteration of a will enable a proper
value of the pulsating current to be provided. But in general such

a position would not be one in which sparkless running was
maintained. In order that this may be the case it is evidently

necessary that at the instant the commutator either throws the

coil into circuit, or short-circuits the coil and secondary, the

currents should have the same values both in the circuit of the

secondary and in that of the coil. This must be produced by the

adjustment of the pairs of brushes as a whole. The general nature

of the necessary conditions is as follows. During the active period,
that corresponding to the angle a, the current in the coil is directly
under the influence of the transformer. During the angle /? it is

short-circuited and hence will gradually fall in value, being
influenced in its rate of fall by the reaction of the short-circuited

coil itself. In order that the commutator may act without any

Line Current

Fig. 207.

sparking, all that is required is that the fall of current during the

short-circuit period should be such as to just bring the current to

the value that the current in the short-circuited secondary has at the

instant the period of short-circuit thereof is ended. In Fig. 207 are

shown curves giving the observed relation between the angular
motion and the values of the primary and secondary currents,

showing that by proper adjustment the required condition can
be fulfilled.

The compounding is most satisfactory when a is considerably
smaller than ft. This follows from the fact that in the opposite
case the time the current has to fall to the required value is very
small, and thus any slight alteration in conditions will greatly
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affect its final value, and hence the adjustment of the brushes,
both as a whole and relatively, will be necessarily much more
difficult.

The commutator given in the figure is of the form suitable

to a two-pole machine, when the machine is multipolar the

commutator must evidently have the number of sections increased

to the proper number, but the two pairs of brushes will still suffice.

Compound pole. The following method of securing increase

of E.M.F. with increase of load is due to Mr Miles Walker. On
p. 242 it was shown that the effect of the armature current could be
considered as having two components, the one producing a shearing
or distorting effect the other a directly increasing or diminishing one :

the former was due to the part of the current in phase with the

Fig. 208.

E.M.F. the latter to that in quadrature. On circuits of fairly high
power factor the former effect is manifestly the more important,
and such cases are also the most usual in practice. The shearing
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effect can be used to produce a compounding action in the follow-

ing way. Let the pole of the machine be made in two halves as

shown in Fig. 208, the larger half being provided with a magnetising
coil carrying current as shown and the smaller half being devoid

of magnetising current. In the figure a second coil is shown

surrounding the whole pole round which current can be sent if

desired. When the armature carries no load the distribution of

flux will be somewhat as shown at I. Let the direction of

running be such as to produce a distribution of armature current

at the instant of maximum in two adjacent coils, resulting in the

corresponding magnetic effect being a shear as shown in II.

Under the circumstances the main part of the pole is highly
saturated with the main flux, and hence the effect of the shear on
it is comparatively small

;
not so, however, as regards the small

part of the pole. This is in a practically non-magnetised condition

as far as the main flux is concerned, and can thus take up a large
flux in response to the shearing effect of the armature. It results

that the flux now existing over the pole will be somewhat as in

III, and thus the armature current has produced automatically an
increased flux. By suitably proportioning the pole a very satis-

factory compounding effect can be produced which is almost in-

stantaneous in its action. It is evident that if a current with a

very large lagging component is carried the direct demagnetising
effect of this may be more than the magnetising effect of the

shear, and then the compounding will not occur
;

it is found in

actual machines that with values of the lag up to a power factor

of 0*75, which is smaller than occurs in most cases, the com-

pounding is quite satisfactory.

17



CHAPTER XXL

ARMATURE REACTION IN DETAIL.

More detailed consideration of reaction. In the last

chapter we developed a method of considering the effect of the

reaction of an armature on the field which consisted in merging all

the diverse effects due to the different fluxes produced into a 'single
constant determined from the open and short-circuit curves, which
was called the synchronous reactance. We will now more closely

inquire into the investigation of the armature's effect. Many
methods have been proposed but we will consider one due to

Mons. J. Renzelman of Charleroi, which gives excellent results in

practice. The actual observations made on the machine are few
in number, and include the usual open- and short-circuit curves,
but certain other constants have to be found either from calcula-

tions based on the drawing of the machine or on experiments
made with it after completion.

Magnet's stray field. In the consideration of the method
of synchronous impedance one point in connection with the field

magnet's circuit was left out of account, the condition of the

magnetic circuit of the field was assumed to remain constant,

whereas in fact it does not do so. In particular, the fact that the

field windings will produce a certain flux in circuits which are

never cut by the armature was left out of account. Thus with any
definite flux in the armature, which we will call the useful flux,

there will be associated a second flux which passes from pole to

pole and never gets into the armature at all. This is called the

stray flux of the field. The magnetic condition of the field magnet
is evidently dependent on the sum of these two fluxes, and we
must first take this into account.

Let any assumed flux be existent in the whole armature

circuit, we can then from a drawing of the machine and a know-

ledge of the magnetic properties of the iron of which it is formed,
find the necessary current that must flow in the field coils to

produce that flux just as in the case of a direct current machine.

But the magnetomotive force due to those coils will evidently also
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act on the paths where the stray flux can occur and will produce a

corresponding flux therein. The reluctance of the stray flux paths
consists mainly of air, and hence will be of practically constant

value, that is to say, for different currents in the field coils, the

stray flux will be practically proportional to the current in the

coils. Let M be the reluctance of the main magnetic circuit for

the particular current considered, calculated as indicated above,

and let D be the reluctance of the stray flux paths calculated also

from the drawing of the machine. If any useful flux ^> is flowing
in any particular case, the corresponding stray flux will then

evidently be M/D.<&.
Now let OP, Fig. 209, be the complete open-circuit curve for

any machine, and let C be the point corresponding to that for

which the values of M and D were calculated. Since the dynamo
is unloaded, the useful flux will all be cut by the armature, and
hence the ordinate CM will be a measure of that flux at any

point. But for the particular current that we are considering, we

Field Current

Fig. 209.

know that the stray flux will bear the ratio M/D to the useful one,

hence if the line CD be taken of such a length that CD/CM is

equal to M/D, the length CD will give the stray flux to the same
scale that CM gives the observed useful flux. But since we saw
that the stray flux reluctance was constant, if the straight line OD
be drawn, the true total flux that the field is carrying must be
reckoned from this line and not from the axis. Thus the curve

OP can represent three things; when the axis 00 is taken, it

represents the nominal induced E.M.F. produced at any definite

exciting current, or to some other scale, the useful flux, but when
the line OD is taken, the distance between this and the curve

represents, on the second scale, the total flux traversing the field

172
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for the corresponding exciting current. Hence in any discussion

relative to the flux that the field magnet is carrying, we must
reckon from OD, that is, in any questions referring to the saturation

of the field magnets of the machine this line must be taken as

axis.

Armature's stray field and true reactance. In the case

of the armature a similar state of things occurs. When any
current is passing it produces a local field round the different coils

in the armature, principally through air reluctances, which flux

does not get across into the polar faces at all. Since the currents

producing this flux, however, are alternating, it will evince its

presence by the production of an E.M.F. which must be in quadra-
ture with the current to which the flux is due. The flux is called

the armature stray flux, and the E.M.F. can be called the E.M.F. of

the armature's stray or leakage field. Since the circuits in which
it flows are, as said, principally air, and hence have constant

reluctance, the flux will at every instant be proportional to the

armature current, and if we denote the value of the E.M.F. it

would produce at the given periodicity for unit current by the

letter Ss we can represent its effect by saying that it is equivalent
to a reactance in the armature of the amount 88 . Thus, when any
alternating current of the virtual value ^ is flowing, it will produce
an E.M.F. of the amount ^ . 8S in quadrature with itself.

The value of this reactance can, like that of the field magnet's
stray flux, be calculated when the drawing of the machine is given.
It can be approximately found in the same way as the reactance

of any other coil. Let one phase of the machine be selected, if it

be a polyphase one, and pass a current into it from a source of the

appropriate periodicity, and measure in the ordinary way the

current, pressure and power. To approximate as nearly as may be
to the proper conditions, the armature should be placed with its

poles opposite the spaces between the field poles ;
and the circuit

of the latter should be short-circuited to prevent flux from

entering. The value of the reactance can then be approximately
determined. As a rule, the resistance of the armature is suffi-

ciently small for the quotient of the pressure by the current to be
taken as very approximately the value of Ss .

Cross and back reactances. Polyphase machine. But
in the consideration of the armature effect in Chap. XX we saw
that it also produced a direct action on the field impressed on it by
the magnets. In many ways the polyphase machine is easier to

deal with in this respect, and we will first consider that case. If

the armature in such a case is carrying a balanced load, it will be

roughly equivalent to the stator of an induction motor, and thus
the field it produces will be one which rotates relatively to the
armature at a definite velocity depending on the impressed
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periods and the number of poles. If the windings had been

spaced out according to a sine curve, and if the current flowing
were sinusoidal, this field would, as we saw in the case of the

induction motor, be one which varied as the ordinates of a sine

curve round the armature from pole to pole; in any actual

armature it is not so shaped, but may have very different forms,
but the field thus produced, whatever its shape, will rotate,
as a whole, relative to the armature. But this is itself being
rotated relative to the field magnet and in such a direction

and at such a speed as to bring the field distribution due to the

armature to a position of rest relative to the magnet's field.

Hence the action of the armature current on the magnet's field

can be taken as being represented by such a stationary field, the

magnitude of which will depend on the current's magnitude, and
its position relative to the field will depend on the phase of the

current. We saw in Chap. XX that when the armature was in

such a condition that the whole of the circuit supplied by it was

non-inductive, the current maximum was attained when the

armature was exactly midway between the poles as shown in

Fig. 194, while with a completely inductive circuit the lag was
such as to bring the current opposite to the poles as shown in

Fig. 195, the action of the current being a demagnetising one for a

lagging current, and the reverse for one that leads.

Neither of these positions of the current relative to the field is

possible, with non-inductive outside load there must be, as we have

seen, the equivalent of reactance introduced by the armature

itself, while a purely inductive load can never be attained
; any

actual current can, however, evidently be resolved into two

components having the two standard configurations given above.

Thus if the current ^ have such a phase relation as is shown in

v
Fig. 210.

Fig. 210 it is evident that it is equivalent to a component of the

current given by <$ sin ty standing opposite to the poles, and one

^ cos ^ standing between them.

If the polar surface were quite continuous the current belt in

the armature would produce an actual flux of the form we have



262 ALTERNATING CURRENTS

considered, but the poles are discontinuous, and thus the flux due
even to an assumed sinusoidal current distribution will not produce
that form of flux in the poles. Consider Fig. 211 where the flux

that would be produced is shown by the complete curve, which in

this case is opposite to the poles, the actual flux that it succeeds

Fig. 211.

in getting into the poles would evidently be more nearly repre-
sented by the shaded part. This can be evaluated as follows. Let
the maximum value of the flux band be < and let the breadth of

the pole be a times the half-pitch or OCTT. Then reckoning from

the central line as zero, the flux that gets into the poles will

evidently be

*/;
cos x dx or sm

7T

Fig. 212.

Now consider the case where the current belt is between the

poles, as in Fig. 212. Here the expression for the cross flux

will be

/2
sin x dx,

)

which leads to
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Hence the ratio will be

cross flux OCTT= tan -r-
,

opposing flux 4

which will depend on a. With a = J it is 0'41.

Other forms of armature stationary fields would produce
different values of this ratio. Take the extreme case shown in

Fig. 213 where the curve is flat, it is evident that the cross flux

7T i

\WM\
J^-i

Fig. 213.

and the opposing ones are here equal. Again in the peaked
curve in Fig. 214 the ratio of cross flux to opposing, as shown

by the shaded parts, is

2-a'

which with a = | is J. Thus the ratio of these fluxes may vary

greatly with the form of the stationary field.

[

(X7T
\

A H\ / \
Fig. 214.

Such fields would produce E.M.F.S in the armature, the two
E.M.F.S being respectively proportional to the current components
concerned, and hence these may again be treated as equivalent
to reactances of definite amount. If they are called the back

reactance, $&, and the cross reactance, 8C ,
the corresponding

E.M.F.S will be given by ^ . $& . sin ty and ^ . Sc . cos
i/r,

where <$

is the current flowing and ^r is the angle shown in Fig. 210.

The value of these E.M.F.S will evidently depend on the fields

we have just been considering and also on the manner in which

the armature winding is carried out, whether with concentrated

or distributed coils. The calculation of the same is in general

complex, but as an example we will find them for the sine distribu-

tion of stationary armature fields that we have been taking, namely
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those shown in Figs. 211 and 212, with the additional assumption
that the armature windings are so distributed that we can take

the number of them per centimetre run as being also distributed

according to a sine law, that is the number of conductors will be
considered as being also proportional to the ordinates of the given
flux curves.

Consider first the case of the back flux (Fig. 211), here at

any distance x from the centre the flux will be <f> cos x while the

conductors in a small length dx will be, say, b cos x dx, thus the

total E.M.F. due to the whole set of conductors under the poles
will be

which evidently deduces to

(a?r + sin air).

If the armature had been able to produce its full flux effect

the E.M.F. corresponding would evidently be given by

/*

J

2
<|)

cos2 x dx or TT.

o ^

If we call the ratio of the first expression to this one Kb the value

of it will be
1 .

a H sin OLTT
n

Now take the case of the cross flux (Fig. 212). With the

same assumptions as before we evidently have that the E.M.F. due
to the conductors experiencing that flux is

r

sin2 x dx,
o

b&,or is
-^- (a-TT sin

CCTT).

If the whole set had been operative the E.M.F. would evidently
b&

have been as in the last case, or TT.

Let Kc denote the ratio of the above value to this, then
we have

v l
:K c

= a -- sin QLTT, say.
7T

Thus with these assumptions the ratio of these two quantities
will be

Kc 7T Sin OtTT _
KI 7TOL + Sin 7T
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The value of this ratio can readily be worked out for different

values of a. When a is J , it will be found to be about 0'3. Again,
since the reactances will evidently be in proportion to these

numbers for the same armature current, we now have ~- = p.
o&

This ratio has been obtained on the assumption that the

reluctance that the two fields have to encounter is the same,

namely that corresponding to no flux being impressed by the

field magnets. When a flux exists the ratio will alter, depending
on the state of saturation of the circuit. As regards the

back reactance, it is evident that this will be dependent on the

Fig. 215.

field magnet's state of saturation, but it can readily be seen that

the cross one will not be so. For consider Fig. 215, showing the

position of the cross armature field along a pole face, any flux

that this pole may receive in addition, due to its magnetising
current, will in no wise alter the transverse flux, all that it does is

to alter the distribution of the same across the polar face, hence
the cross reaction is a constant for the machine. We shall see that

it is possible to find the value of the back reaction at one point
when the machine is non-saturated, and if this be denoted by
JSC it follows that the constant cross reactance can be found,
since we have the relation Sc/Sb = p.

The constancy of the cross reactance is of some importance.
In considering the question of parallel running we shall see that

the "
synchronizing

"
current is one with principally a power

component, and hence depends on this quantity. Such current is

thus nearly independent of the condition of saturation of the
machine.

Determination of the reactances. So far, then, for the
machine we can take as known, the flux relations given in Fig. 209,
the reactance of the armature leakage or stray field, S8 ,

and
that the ratio of the two reactances Sc and 8b is p =KcjKb . We
must now see how we can find the absolute values of these latter

quantities, and also that of Sb ,
the back reactance in any state,

saturated or non-saturated.
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Let the short-circuit characteristic be taken, and plot it as

shown at OT in Fig. 216. Then the curve RQZ can be drawn

showing the ratio of the pressure to the current in the test.

Under the ordinary conditions of an alternator, unless it is quite
a small one, when the armature is on short-circuit, the pres-
sure produced has only to overcome what reactance is present,
the resistance being negligibly small in comparison therewith.

Fig. 216.

Under such circumstances the current will lag practically 90 and
since the reactance pressures due to Sb and Ss are both in quadra-
ture with the current, they will under the circumstances of the test

be in phase and their values can be added.

It follows that the ordinates of the curve RQZ give the values

of (Sb + Ss). But the value of Ss is known, hence the difference

is the value of Sb anywhere.
This curve can also be used to find the value of Sc . For at the

origin, the circuit of the machine is quite unsaturated, and hence
the value of that ordinate, or OR, is that of the quantity Sb + Ss ,

where QSb is the back reactance for non-saturation. But we saw
that this quantity bore the constant ratio p to the cross reactance,
hence the constant value of that latter reactance is given by

and is thus determined.

If we could take the magnetic state of the field as being
the same under all circumstances, sufficient data would have
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been obtained to find the nominal induced E.M.F. corresponding to

any current and terminal pressure, all that would be necessary
would be to combine the several reactance pressures just discussed

with the ohmic drop in the armature and the given terminal

pressure at its proper phase relation to the current, and the

resultant would be the required E.M.F.

In the actual case things are different, for any applied field

current, which will be a constant quantity for a definite external

characteristic, the nominal induced E.M.F. will not be given by the

corresponding ordinate of the open circuit curve, but will depend
on the alteration in the magnetic property of the field circuit

that is consequent on the reduction of the flux by the action of

the armature current. In Fig. 216 let Of be the constant

exciting current, and suppose that owing to the various reactions

the corresponding nominal induced E.M.F., &, is given by the line

AB. The actual flux that must exist with that current flowing
will consist of two parts, that given by considering the curve OA U
as representing the useful flux, so that AB is that quantity, and
the flux due to the current forcing magnetism round the stray

path of the field magnet : the latter part is/c?, where the line Od
is drawn as described on p. 259. The line Cd being drawn parallel
to OX as shown, it follows that the total flux that the exciting
current is producing must be given by the line AC. But we saw
that in all questions having reference to the state of affairs de-

pending on the existence of any definite flux, the line Od must be
used as the axis and not OX. Hence if a point P be found such
that PG is equal to A C, all quantities depending on the magnetic
state of the machine must be taken as those corresponding to

the point P. But the curve RQZ is that giving the values of

(Sb + S8 ), hence for the assumed value of & the corresponding value

of (Sb + S8) will be pQ. It is evident that if pq is the short-

circuit current corresponding to Pp the value of (Sb + S8) is given
by Pp/pq. This ratio can be found in the following more
convenient manner. Join OP and produce it to meet the per-

pendicular from f in D. Then it will be seen that fD represents
what the value of Pp would have been with the exciting current

Of, provided the magnetic state for this current was the same as

that for the point p. We will call this E.M.F. <. Then if ^ is

the short-circuit current at /, that is fe, it is evident that since

Pp/pq = Dfffe, the value of (Sb + Sg) for the actual magnetic
state of the machine is given by /%.

Thus instead of reading off the value of (Sb + S8) from the

curve, for any assumed ^, we can draw the line OPD and divide

the length ^ thus obtained by the constant quantity ^. It follows

that by this construction we can readily find all our three constants

Sb, Ss and Se for any assumed value of .

External characteristic. Non-inductive circuit. We
must now see how a construction can be developed for finding
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the relation between the current and potential difference for a

constant exciting current. The case of a non-inductive load will

first be considered.

On referring to Fig. 216 it will be seen that DF represents the

difference between the actual nominal induced E.M.F. and that

which would have been produced with an ideal magnetic circuit

with the same exciting current, hence this difference must be due
to the effect of the armature current in forcing back the flux, in

other words, this is the value of the E.M.F. corresponding to the

back reactance, 8b . Hence if we draw a line, OB (Fig. 217) to

represent to some assumed scale the value of Sl ,
and cut off the

part AC equal to the corresponding value of
3
the difference CB

must be the value of the E.M.F. due to the back reactance. The
E.M.F. for the cross reactance is in quadrature with the latter and
hence will lie along the perpendicular line CD. The other pressures

B F C G A

Fig. 217.

that have to be considered are the terminal pressure, that for the

ohmic resistance, and that for the leakage reactance of the armature;
the first two in this case are in phase, the second is in quadrature
with them. Thus draw a line AR of the length to give the

terminal pressure, and if that is known, it will follow that the

line RE forming its production will represent the ohmic drop, and
the leakage reactance of the armature must lie along the perpen-
dicular, that is along the line ED. Hence any value of S being
taken, the corresponding vectors for the various quantities con-

cerned must form, for non-inductive load, a figure like that shown.

Since the angle at E is a right angle, we can draw a semicircle

with its centre on AB that will pass through E, in fact, if ED
produced cuts AB in F, the line AF is the diameter of such a

semicircle.

Let a perpendicular EG be drawn from E on AB as shown,
and we see that the angles FDC, DEG and EAF are all equal ;

let the common value be ^.
Let the armature current flowing have the value <$, then since

BC represents the E.M.F. equivalent to the back reactance its

value is

Sb .sm<*lr.
(@ (1),
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also since DC is the value of the E.M.F. equivalent to the cross

reactance we have

But from the figure FC = DC . tan -f,

therefore FC = SC . sin ^ . ^.

Thus = ^ is known.

We can also write FC =
b *j/-

........................... (2),
06

if BC, the back E.M.F., be denoted by gb .

Further we have FD* = FC2 + DC2
,

and hence FD = <$ .Sc . But from the meaning of the symbols, DE>

being the E.M.F. due to the leakage field of the armature, is Sg . <@.

Hence FE = (Se + 8.) <&........................ (3).

But we have CG = DEsm^lr, and hence CG = ($ .Sg.sm-^r, com-

bining this with (1) we have

CG Sg nr,
* S8

or OG = .................. 4 -

Now AF=AC+CF, but since AC is & and CF is given by
(2) we have

Ar-t+Styd, say (5).

Also FG = FC+ CG, or from (2) and (3)

,Cf Cf \ /Q'lC/x
*2 -i- -^

)
= g (

c + ^
^ft/ \ o^ /

Hence J.G being JL (7 (76r is given by (4),

<? P Sg
or

b

Therefore AF is divided in G in such a ratio that

It also follows that ^=
oc + >

And since Sc and >S, are constant ^ is proportional to

The terminal pressure is given by

gQ
= AR = EA-<@.r (8),

where r is the ohmic resistance of the armature.
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The complete predetermination of the external characteristic

can now be derived as follows :

1. Calculate the ratio of the useful armature flux to the field

dispersion flux for one field current.

2. Calculate or measure the value of 8g for the armature.

3. Calculate the value of KC\K^ for the machine.

4. Take an open-circuit characteristic.

5. Take a short-circuit characteristic.

From (1) and (4) we derive the curve OA U and the line

(Fig. 216).

Assume any voltage for less than the maximum, and apply
the construction given on p. 266 to find S^, and the value of

($& 4- $g) everywhere.
Deduce the value of $c and $6 from this last, (2) and (3).

Deduce the value of b from the construction on p. 266.

Find the value of d, equation (5), draw a semicircle on a line

of this length, and divide the diameter in the ratio given by p,

equation (6).

Erect a perpendicular at this division point, then the current

pressure will be given by equation (7) and the terminal pressure

by equation (8).

External characteristic. Inductive circuit. When the

external circuit is inductive the construction must be modified

Fig. 218.

as follows (Fig. 218): with the same line as base, construct a

triangle whose sides are respectively

-*" tan X and AK= ^ + ^.r.secX

and the top angle is (90 X) where X is the angle of lag. The

point K will lie on a circle whose centre is on the line AO
inclined to AF at the angle X. Determine the point G as before,
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then if RE is parallel to the current vector and KE is perpen-
dicular, it follows that since

KR = f@.r.sec\, RE = <@.r and KE = ritm\.

Thus if we measure the lengths of FK and KA we evidently have

or is again proportional to ^Iff" and

When cos X is unity this reduces to the former expressions.

For a purely inductive load for which cosX is zero and r is

also zero, the circle becomes the diameter, and we then have

/= GA and & =

or, from the expressions given above,

BG

The complete determination of the external characteristic for

any assigned power factor can thus be carried out. The method
involves drawing the given semicircle for different diameters and

dividing it in the proper ratio for each point, it is thus not a very
rapid one, but the graphical methods used can readily be systema-
tized so as to save a good deal of time. When applied to any
machine the results are found to be very nearly confirmed by
experiment, and are considerably closer than any of the other
methods of solving the problem.

Monophase machine. We must now briefly consider the

case of the single phase machine. The armature field will

no longer be one of uniform strength rotating relative to the

armature itself at a definite speed, and hence brought to rest

relative to the field by the rotation of the armature. It will be an

alternating field
;
but we saw in the case of the monophase induction

motor that such a field could be considered as being resolved into

two oppositely rotating parts, each having half the amplitude of

the given alternating one. The same holds good in this case. When
these two components are considered as being carried round by
the rotation of the armature, it will be evident that one of them
will be brought to rest relative to the poles, and the other will rotate

with double the angular velocity of the armature. The latter

will first be taken into consideration. It will evidently tend
to produce an alternating current in the fields of this double

frequency as mentioned on p. 241. The presence of this current
can be readily shown by taking an observation of the field current

by means of an oscillograph, or by placing in the field circuit two
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ammeters, the one a magnetic one which will only register the

direct current, and another instrument, such as a hot wire one,
which will measure the virtual value. The latter will be found to

show a greater reading than the other, indicating that in addition

to the normal exciting current, an alternating one is flowing. The
value of the latter can evidently readily be found from the

readings of the two instruments. This pulsation in the magnetising
current will in turn tend to produce higher harmonics in the

armature which would again react on the field if circumstances

were favourable. The effect of these oscillations in the exciting
current due to the effect of the rotating component of the

armature's field can be largely damped out by suitable devices.

Thus if the polar faces be solid, so that the oscillations of the flux

produce eddy currents in the poles, the effect of these currents

will be to produce magnetic fields tending to largely reduce the

oscillations in the flux. The same effect can be more certainly

produced by suitably arranged circuits placed on or round the

poles. We will consider that the reactive effect of these higher

frequency terms has been in this way so diminished that they are

negligible.

It remains to consider the fixed armature field of half

magnitude due to the stationary component of the armature field.

In the polyphase machine the effect of the armature when short-

circuited was due to the two or three circuits, as the case may
be, carrying the same current. If the monophase machine be

equivalent to the polyphase one, this state of things would

correspond to' an armature current in the single circuit twice as

large as that which circulated in each of the circuits in the former

case. Under these circumstances the fixed component of the

armature field would have the same value as in the corresponding

polyphase case. Hence if we still denote by Sb the back reactance

of the actual machine, and if the ideal induced E.M.F. ^ and corre-

sponding short-circuit currents, ffig, be taken as before (p. 243),
it will evidently follow that the relation between these and the

values of the back and armature leakage reactances will now be

given by

The cross reactance will, as before, be given by

Hence the monophase machine, under certain conditions, can

be dealt with in the same way as the corresponding polyphase one,
and a similar construction to that already developed will hold

good.



CHAPTER XXII.

ALTERNATORS IN PARALLEL.

Parallel running of alternators. We will now consider

the case where two similar alternators are working in parallel on

a pair of mains and both delivering power to some circuit con-

nected therewith. It is evident that one condition that must
be fulfilled is that they should be running at the same speed,
and a second condition is that the state of running should be

stable, that is that any alteration from a steady state of working
must result in the machines continuing in such a steady state.

We will only take the case where the two machines are excited
so as to produce equal nominal E.M.F.S and where they are similar

in all respects, and we will suppose that they can take up
L. 18
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any desired phase relation and yet continue to be driven smoothly
by the prime movers. In Fig. 219* let OP and OPl be the

vectors representing the two equal E.M.F.S, , OP being that for

the leading machine, and let the phase angle between them be 0.

As before we will denote by a the angle given by tan a = ^ >

whereR is the armature resistance and 8 the synchronous reactance

of each armature, the impedance being /; the angle a is in practice,
as we saw, somewhere near 90. Let the load be such that the

angle of lag between the current in the outside circuit and its

terminal pressure is X, the resistance of the load being RI and its

impedance Jj. We will first see what relation must hold between
the different quantities and then derive a construction for the

same. Let the vector OA be that for the pressure between the

mains, then PPl is that giving the pressure tending to circulate

current locally round the armatures, AP is that required to send
current round the armature of the leading machine and APl that

for the lagging one. On these vectors draw two similar impedance
triangles such that the angles PAQ and P1AQ1 are each equal to a.

The vectors AQ and AQl can then be taken to represent to

some scale the two currents given by the two machines being R
times these currents, respectively. Bisect Qd i*1 @i and it is

evident that AGl will represent half the current that is flowing
out to the mains, or if this be denoted by 9$ we have AGi is \^R.
Further the angle XAC1} being that between the resultant current

and the pressure, is the angle X. Now bisect PP in C and draw
the triangle A Gfl. It is clear that this triangle is similar to either

of the impedance triangles, and that the angle GA Gl is the angle a.

Let S be the value of the terminal pressure given by OA ;

since RI is the resistance of the external circuit, we have

i .

and hence we have -= r

but AC= AC1/cosa, which leads to

AC E.cosX
O

~~

2 . EI cos a
~~

2It

*

Further the angle CAO, being equal to (TT CAX) while CAX is

(GAGj.
- XAGJ or (a

-
X), will be given by (TT + X - a). It follows

that for a given load we can find the position of the point A for

any assumed value of X by means of the following construction.

Draw two equal vectors OP and OPl to represent the two

equal E.M.F.S at any phase angle 6 and bisect the difference vector

as at C. Determine the point A by making the angle OAG equal

* Mr C. E. Inglis.
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CA I
to(7r + X a) and the ratio -^-r equal to ^y. With a definite

condition of the supply circuit this ratio is a constant, and
hence for any value of the phase angle 6 the point A will

lie on the line OA, hence when determined for one point, the

position of A can be found for any other position of the points

P, Pl by drawing a line parallel to CA through the point where
PPl cuts OC. On the lines PA and P^A construct the impedance

triangles for the two machines and project the resistance sides

on to the pressure lines of the respective machines as at MN
and MJfi. These projections will be proportional to the com-

ponents of the currents in the armatures that are in phase with

these E.M.F.S. The following expression can be shown to give the

value of the two projections concerned :

MN or

where k denotes the ratio of AO to AC; a positive value of
^

must be taken for the leading machine, and a negative one for

the lagging machine. Let the expression in the bracket be

denoted by <f> (0), then since the power that a machine is delivering
is equal to the product of the pressure into the in-phase current

and the latter is given by MN/R, while further we have / cos a. = R,
it follows that the mean power will be given by

The expression for <f>(0) is too complicated to be used for

calculation but it can readily be seen that it can be written in

a simpler form. For <f>(0) is a function of the sine and cosine

of half the angle and hence it follows that it can be written

in the form

where the quantities , 77 and
{$

can be expressed in terms of the

various constants of the circuits. The power being thus repre-
sentable by an expression of this form it follows that if we can

determine three points in the relation between <f>(0) and the

angle 0, the whole relation can readily be plotted. The most
convenient points to take are those for which is zero, 90 and

180, and we will now see how the required curve can be obtained

from these points. It is only necessary to consider one of the

machines, since when the curve for that is obtained it will be seen

that that of the other readily follows. By carrying out the above

182
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construction for a special case in which the angle COA was about

5 and the ratio AC/AO about 9, the angle a being 60, the

values of the projections of the current vector on the E.M.F. vector

of the leading machine was found graphically by the above con-

CA L

Fig. 220.

struction to be given by the lengths shown in Fig. 220, where A B
is the projection MN for zero phase angle, LG for 90 and CD for

180. The first point is to determine the value of f in the

expression. We evidently have

AB = % -f 77 sin /3 and CD = ? 77 sin /,

so that =

produce AB to E making BE equal to CD, then it will be seen

that AE =
2f. Hence if AE be bisected in F the line through

that point is the axis of the curve 77 sin (6 + 0). The maximum of

this must now be found. Since EF is the value of f, and BE is

f 77 sin j3, it follows that FB is that of 77 sin {3. Further, the line

LG is equal to the value of f + 77 sin ($ -f /3) when is 90 or is

f 4- 77 cos /3. Hence HL being equal to f,
the part 6r//" gives the

value of 77 cos /3. Thus if the line HK is drawn perpendicular to

GL and equal to .RF and if GK is joined, it follows that GK is

the value of 77. With a centre on the line FK describe a circle

with this radius and project on to it from the point B marking
this point with a 0. Divide up this circle into say twelve equal

parts reckoning from and mark as shown with the corresponding
values of the angle, positive and negative. Then take a base

line through C, and in the ordinary way project across to give the

harmonic curve determined by these points ;
this curve is shown to

the right. The upper part will give the relation between the

phase angle and the power due to the leading machine, the lower
that for the lagging one. It will be seen that the former always
does more work than the latter, and thus the current that flows

between the two tends to pull back the leader and accelerate the

lagger. Further, after a certain value of the phase angle, the

lagging machine actually has negative power, this must mean
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that it is receiving power from the other in addition to the line

power, or is tending to act as a motor. This action will be referred

to at length later on.

Influence of prime mover. Since the leading machine

always does more work than the lagging one, it follows that the

two machines tend to get into such a phase relation that the angle
6 is zero. Under these circumstances the resultant vector PPi
giving the pressure which is causing current to flow locally round
the two armatures is zero, and the two machines are just cophased
on the mains and antiphased with reference to one another. This
ideal state of things cannot in general be realized, there are

always slight differences in the condition of the two machines
which will tend at every instant to disturb this state of

affairs, and hence there will generally be a small outstanding
pressure causing current to flow between the two armatures

;
this

current will evidently flow in such a direction as to. pull the

lagging machine back again towards the position of zero phase
angle and may be called the synchronizing current of the two
machines. Its value will depend on the constancy of the turning
moments of the two prime movers and on the electrical constants

of the armatures. It is of very great importance that the prime
movers should exert as uniform a turning moment as possible or

the synchronizing current may attain a large value and the

regulation be badly affected, as well as the maximum possible load.

We shall see when we come to consider the phenomenon of hunting
that the matter is further complicated by the fact that a dynamo
possesses a proper natural period of oscillation to and fro about a

mean stable position ;
a state of affairs in which a machine

is oscillating in speed about a mean speed is called
"
hunting," and

the corresponding change in the current received by it is referred

to as
"
surging."

Influence of shape of curve. If the dynamos have different

shaped E.M.F. curves there may be another factor which will to

some extent determine the value of the circulating current. Thus
let the two machines have the third harmonic present but in such

a way that the one is peaked, the other is flat (see Figs. 90 and 91
).

It will be seen that in this case although the fundamental sines

may be properly antiphased to one another, these two harmonics
will then be cophased with regard to the local circuit between the

armatures and will tend therefore to somewhat increase the

natural synchronizing current that will be necessary to keep the

machines in step. It is found in practice that even a considerable

want of similarity in the E.M.F. curves may not produce any serious

inconvenience in parallel running.

Process of putting machines in parallel. We must now
see how it is possible to put two alternators in parallel so as to

share in supplying power to a definite load. Let one of them, /
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(Fig. 221), be running, the excitation being supplied by means
of the direct current dynamo, D, which may either be a separate
little machine directly connected to the field of the alternator

Fig. 221.

or, as shown, a distinct machine connected to a pair of mains
or bus-bars so that it can be used to excite any one of the

alternators. To put // in parallel with / the first thing is to

run it up by its prime mover until it is running at what is

known to be approximately the correct speed. The exciting
circuit is made and the current adjusted until the voltmeter

that is placed across the armature shows about the correct

terminal pressure, or a little more than that between the

main bus-bars B on which the load is placed, as shown by the

voltmeter on I. Under these circumstances the two machines /
and // will be running at nearly the same speed : let the E.M.F.S be
the same in magnitude but let the periods be respectively p
and p + Sp. If // is running faster than /, 8p will be positive, if

slower it will be negative.

It follows that the difference between the two pressures, that

is the pressure tending to circulate current between the two

armatures, will be given by

E sin (p + Bp) . t E sin pt,

that is by
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Now let two glow lamps, each capable of carrying the normal

pressure, be placed as shown across the switch blades of the

incoming machine. The above pressure will then send a current

round these lamps and this current will be such that its amplitude
fluctuates according to the applied pressure difference, that is

according to the expression

In other words this current will show the effect known as
" beats

"

in acoustics. When the lamps glow brightly the two E.M.F.s must
be adding as regards the circuit between the armatures, and hence
will be opposing as regards the mains. On the other hand, when
the lamps are black the two machines are evidently antiphased as

regards their local circuit and hence cophased as regards the

mains
;
this is the condition that has to be fulfilled. Hence if the

incoming machine, //, has its speed carefully adjusted till for some
few seconds the lamps remain quite black we know that the main
switch can then be closed with the machines at their proper phase
relation as regards one another. The exciting current of // can
then be carefully adjusted till it takes up its proper share of the

load.

Fig. 222.
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This direct method can be used in cases where the machines
are of low pressure, such as is commonly the case in laboratory

dynamos, but with machines of high pressure it would be very
inconvenient to have lamps connected as shown. In such a case

transformers are used as is shown in Fig. 222
;
these transformers

are in addition often used to operate the voltmeters for the

different machines instead of placing them direct on the terminals.

The transformers are shown at T, T, and they are connected up to a

special pair of bus-bars distinct from the main pair, B. In this

case it is unnecessary to have double pole switches for the

auxiliary circuit and hence a single lamp can be used for each

machine as shown. In the figure the exciting circuits of the

dynamos are not shown. It will be readily seen that the machines
can be parallelized exactly in the same way as just described by
means of the indications given by the lamps on the secondaries of

the transformers. In the present case, however, it would be

possible by joining up these secondaries in the opposite direction

for the incoming machine, to cause the criterion of brightness
rather than that of darkness to be utilized as the indication of the

proper phase relation.

Many methods can be used for connecting up the parallelizing

lamps, especially in polyphase systems. One is shown in Fig. 223,
which is practically identical with the last described monophase

Fig. 223.

case, the lamps being merely fed by transformers placed across the

star connected generators. By special connections it is possible in
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the polyphase case to indicate the relative motion of the two

machines, that is, to show whether the incoming machine is

running too fast or too slow. Let three lamps be connected to a

three-phase armature as shown in Fig. 224, the usual transformers

being for simplicity omitted. Let the vectors representing the

C,

6

Fig. 224.

E.M.F.s of the two machines be at any instant as shown in the

figure below, then if the lamps be denoted as in the figure by a, /9

and 7, the pressure on a will be given by AQ, that on ft by A^C,
and that on 7 by BBt . If the two machines be running in

synchronism with the configuration shown in the figure, a. will be

very bright, ft less bright, and 7 will be very dim. When the two
are in their proper phase relation, a and (3 will be equally bright
and 7 will be black. But if we consider the vector system A^Bfi^
to be revolving faster than the system ABC, it is evident that the

lamps will experience a cyclic change of terminal pressure, and
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will therefore brighten up in succession; further, if the system
A^Ci be rotating more slowly than ABC the same effect will be

produced, but the lamps will now go through their cycle of

brightenings in the opposite direction. Hence the order in which

they brighten will be an indication of the relative motion of the

two armatures. Instead of the three lamps it is evident that a
suitable electromagnetic device could be employed which would

directly indicate whether the incoming machine had to be speeded

up or slowed when the beats occur.

In the case of compounded alternators it is desirable, as in the

case of direct current compound machines, to provide a further set of

bus-bars or equalizing bars connected with the compounding circuits

in order that the excitations may not be unequally affected when
the machines are put in parallel. These bars are so arranged that

when the machines have been put properly in parallel on the

main bars, the series circuits are likewise put in parallel with one

another.



CHAPTER XXIII.

THE SYNCHRONOUS MOTOR.

Action of alternator and motor. When we were con-

sidering the case of two alternators working in parallel we saw
that whenever there was a phase difference between the two one
did more work than the other, and thus there was a flow of current

between the two tending to bring the lagger into phase with the

leader. Now let such a pair of dynamos be working as before but
let the external load on the mains be removed. The two will still

run in parallel. If in addition the one of them have its prime
mover cut off it will now be receiving current from the other, and
in fact could be loaded up mechanically on a brake and give out
mechanical power, all the while continuing to run in synchronism
with the other. In this case the second machine is called a

synchronous motor, and we will now proceed to investigate its

properties. We will for generality take the two machines to be
dissimilar and to be connected by a main of definite impedance :

they will of course be considered to be working at the same

periodicity.

For the present it is a matter of indifference whether the
machine be monophase or polyphase, the discussion following can
be taken to refer to a single phase of the latter machine. All the

phase relations per armature will be the same in a polyphase
machine when the loads on the phase are balanced, but the power
absorbed and delivered will be greater in proportion to the number
of phases.

Vector relations. Let OG (Fig. 225) be the E.M.F. of

the machine that is acting as generator at one end of the

line, and let OM be the E.M.F. of the motor at the other end
of the same. These lines represent the nominal induced E.M.F.S

due to the actual exciting currents as in the case of the

dynamo. If the two be running in any stable manner the
two vectors will have a definite phase difference that we will

denote by 6. What determines this will be considered shortly.
The difference between these, that is, GM, must be the pressure
that is necessary to send the current down the complete circuit of
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the two armatures and the line. If the total resistance and

reactance of this is known, we can draw on GM the impedance

triangle shown at GMQ, such that the side MQ represents the

pressure required by the ohmic resistance, and GQ that required

by the reactance. The three sides of this triangle are severally

equal to <$.R, <&.S, and ^./, where ^ is the current flowing,

Fig. 225.

R the resistance, S the reactance, and 7 the impedance of the

whole circuit. The angle GMQ is thus fixed when the circuit is

given, and if we denote the two E.M.F.S by and Ji it is evident

that the three quantities <, Jl and / remain fixed for all other

variations in the relations
;
we may call them the characteristic

quantities for the two machines working on the given line.

The direction of the current is evidently that of the vector 00
parallel to MQ and in this figure it leads both the E.M.F s

;
the

phase relation of the current and these E.M.F.s will be considered

later on. It should be noted that the impedance triangle for the

whole line is really the result of adding up the several impedance
triangles for the different parts, thus if these be GSW for the

generator, TSV for the line and MTU for the motor, the pressure
at the terminals of the generator will be OS while that at the

terminals of the motor will be OT. Hence the angles between
these pressures and the current will differ slightly from those

between the current and the E.M.F.s, so that a current that is in

phase with the generator's E.M.F. cannot be in phase with the

pressure at its terminals, and hence the load on the line will be

inductive. In discussing the question it is in general more
convenient to consider the phase relations with reference to the
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E.M.F.S, but the above point must be borne in mind to avoid

confusion.

Expression for the power. We can easily find what power
is being supplied by the generator and used by the motor, for if

the lines OG and OM be projected on the direction of the current

(Fig. 226), that is, on MQ, these projections are evidently such that

when multiplied into the current they will give the powers
required. Thus the power being supplied by the generator will

be the current, ^, multiplied by PQ, that absorbed by the motor

and turned into mechanical power partly inside owing to friction

and core loss, and partly utilized outside in the form of mechanical

power, will be given by PM . <$, while that lost in the resistance of

the whole line will be given by MQ . *$. The latter is necessarily

given by ^R, where R is the total equivalent resistance of the

circuit as before. From the properties of the impedance triangle
we know that the line GM, which we will denote by &, has the

length ^ . /, and hence we have ^= t\I. Thus the generator
. m PQ.% . m PM.%

power is Wg
= ~

j-
,
and the motor power is Wm = --j

.

We can readily express these quantities in terms of the

characteristic quantities and the phase angle. For draw the line

OH from making the given angle a with OM, and produce the

line MG to meet it in H, calling the angle at H, /3. Since the

angles of the triangle OMH are two right angles as are those at

the point M, it follows that the angle OMP is also y3. Project the
sides of the triangle OMG on this line and we get

. cos a + c^. cos /S
=

. cos (a 6\
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but PM=J.cosft,

hence PM= -

{Jt- . cos (a
-

0)
- Jfi . cos a},

which leads to

Wm = r {^=^cos (a
-

0)
- ,//

2
. cos a}.

Similarly we can draw the line OK making the same angle a with

OG, and produce MG to cut it in K, calling the angle at K, 7.

By the equality of the interior angles of the triangles GOK and

MGL we similarly see that the angle at L is also 7. Hence if we

project the sides of OMG on this line we have

Ji cos (a + 0) + &. cos 7 = </. cos a, but PQ = </. cos 7,

which leads to

Wg
=
j (c^

2
. cos a - <J^. cos (a + &)}.

Hence the powers have been expressed in terms of the desired

quantities.

It will be noted that the way in which the powers depend on

the phase angle, a, is solely dependent on the three characteristic

quantities, c^, Jit
and a. The impedance only gives, so to speak,

the scale on which the power is to be measured, and sets an upper
limit to its value. Thus the solution of the question can be

considered apart from any definite value of the impedance of the

circuit, and will depend as to its form solely on the ratio of the

resistance and reactance.

Example. Let us apply these expressions to a definite case

lay way of illustration, taking for the characteristic quantities
= 5000, Ji= 4500 and a= 60. The results are plotted in Fig. 227,

where the upper curve is for the machine excited to 5000 volts

and the lower for that at 4500 volts. The ordinates are such that

they give kilowatts when multiplied by 1000/7. It will be noted
that each has a positive and a negative part. When the upper
curve lies above the axis it is acting as a generator, and when
below as a motor, and the reverse holds for the other machine.
There are thus two regions of motor action, the first when the

more excited machine acts as generator, the other when the less

excited one does so. It will be seen from the figure that in the

former case the motor action is greater than in the latter and
extends over a longer range of phase angle. Further, the difference

between the ordinates must be the loss of energy in the circuit

owing to resistance, and in the latter case this is evidently greater
in proportion than in the former. Further, it will be seen that
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the condition of the latter motor action is associated with different

phase relations to the current. These points can be directly seen

30

Fig. 227.

as follows. Draw the triangle GMQ, Fig. 228, as before, and take

the case where the generator has a higher E.M.F. than the motor,
as shown by the lines OG, OM. The power produced by the

generator is proportional to PQ and that of the motor to PM, the

loss being proportional to MQ. Now let the conditions be

P P' M Q

Fig. 228.

reversed, the higher excited machine being the motor, and we get
the lines O'G and C/M. With the same loss, it will be seen that

the two powers are much smaller, being proportional to P'Q and
P'M. Hence the condition of greater E.M.F. in the generator is in

general the more efficient to employ. It will be noted that in the

case figured, the current leads on the E.M.F. of the generator when
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it is less excited and lags on it in the other case. This lead or

lag is not necessarily associated with these relative conditions to

the extent indicated in the figure, but a change of phase relation

must ensue. In some cases the effect of the over-excited motor

tending to produce this leading current may be utilized to bring
the current and the pressure on the terminals of the sending end
of the line approximately into phase and thus avoid extra drop
in the line.

Stable action : efficiency. On referring again to Fig. 227

it will be seen that the motor part of the lower curve has two

equal parts which are cross hatched at different angles. The first

part is one in which the motor can respond to any required increase

in load by properly drawing on the generator, and this can be

done till the maximum output of the motor is attained. The
second part, however, indicates that with increase in demand of

power from the generator, the motor's power actually decreases.

Thus this part of the curve is unstable, and has no real significance
as to the operation as a motor capable of taking a load, in fact

10 20 30 44 SO 71

Rel&tire Angular Position of G and M in Degrees.

Fig. 229.

only the first part need be considered. Hence in Fig. 229 this first

part has been drawn out to a larger scale of phase angle, and in

addition the ratio of the two powers, or the "
electrical

"
efficiency,

is shown. It will be seen that the range of useful phase difference

is again restricted by conditions of economy to comparatively few

degrees, and hence the actually useful part of the curve is small.

The maximum efficiency in the case considered is at about 12 on
the power scale, or with an impedance of 20 in the line, is at

about 60 kilowatts. It will also be noted that the condition of

running light corresponds to a negative value of the phase angle
of about 3?.
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Maximum output with fixed characteristic quantities.
When the characteristic quantities c^ Jt and a are given, certain

important points in the working can be found. The maximum
output of the motor will evidently occur when cos (a 6) is unity
or when (a 6) is zero or TT, that is for an angle of phase difference

equal to a or to (a TT). The former corresponds to ordinary motor

action, the latter to the motor having the greater E.M.F. In
the case we have taken, the former occurs at 60, as will be seen

from the figure. For this value of the phase angle the input is

~( .//cos a), and the input is (c^'cosa 2a). The

corresponding values in one case are 12'5 and 23'75 as shown in

the figure.

Zero output. The point of zero output is evidently given by

gcos (d 6)
= Jl cos a,

or occurs at an angle given by

.(M \a
cos~M-^

cos al.

The corresponding input will be found by substitution in the

general expression. In our example the phase angle for zero

output will be found to be 60 - cos"1
. 0'45 or -

(3 . 15'), which

agrees with the figure. The corresponding input is about 0'2.

M Q

Fig. 230.

The vector representation of this case evidently corresponds to

the projection of OM on the current vector being zero, and is thus
as given in Fig. 230.

19
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Electrical efficiency. The efficiency is given by the ex-

pression
Jt ^cos oL 6) Jl. cos a

~~~J' cf. cos a -^ cos (a +(9)
'

and hence the maximum efficiency will occur at an angle found

from the relation -. = 0.
dv

This leads to the following relation as giving the angle at

which the maximum efficiency occurs :

a + 0)
- * sin (a

-
0).

Range of motor action. The above relations hold for the

case where the three characteristic quantities are given. Certain

other relations can be found when some of these change. Thus
we can readily find the value of the motor's E.M.F. that will enable

it to continue to act at one as a motor. For the motor will be

taking in power all the while the expression <^(cos a 6) Jt cos a

is positive, and this will have its greatest positive value for a given
line and generator E.M.F. when the cosine is unity, hence the

G

greatest E.M.F. the motor can have will be given by Jt = -
.

For any excitation of the machine giving an E.M.F. greater
than this value, it will not act as a motor.

Value of Jt for maximum power supplied. We can

similarly find the value of the motor's E.M.F. that will enable it

to take in maximum power from the generator. The maximum

power being proportional to Jt\ /^cosa], this itself will be a

maximum for variations of Jt when its differential coefficient with
G

respect to Jt is zero, this leads at once to Ji = ~- as the

value of the E.M.F. giving maximum power. It will be noticed

that it is one half of the maximum possible E.M.F.

It will be readily seen that in this case the motor's E.M.F. is

equal to <$*, the length of the line GM, which gives the drop in

M

Fig. 231.

the line, and that the generator's E.M.F. is in phase with the

current. For in any case of maximum motor power we have
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g
6 = a (Fig. 231). Further in the present case we have Ji

^
.

But the value of <% is given by

^^ = jp + j*_ 2j^, cos MOG,
which in this case leads to Jl= &. Hence the angle OGM is

equal to a, from which OG and MQ are parallel.

Maximum power for given current. Another problem
easily solved is that of finding the value of Jl that for a given
current will enable the motor to take in maximum power. This

means that the length of the difference vector, $ or ^ . /, is given,

Fig. 232.

and that the projection of OM on the current must be a maximum,
that is, that E.M.F. must be in phase with the current. The vector

representation is thus as in Fig. 232, from which we readily see

that the motor's E.M.F. must be given by

/* = Ji* + <%*-%.<%. cos a.

It should be noted that this does not mean that the current and

pressure in the supply line are in phase.

Motor E.M.F. for given output. Another important
relation is given by the conditions that the angle a, the generator's
E.M.F. and the power taken from it by the motor are fixed, and the

resulting relation between the line current and the motor's E.M.F.

is required. It can readily be seen that for a given value of the

current, that is, of ^, and also given values of the generator's E.M.F.

and the intake of power, two values are possible for the motor's

E.M.F. For consider Fig. 233, where the line MG has a definite

length, depending on the current, and the generator has a definite

E.M.F. given by OG or 0-fr. The constancy of the output under
these conditions must entail the constancy of the projection of the

motor's E.M.F. on the line PMQ. Hence if a perpendicular be
drawn at P the vector for the motor's E.M.F. must lie on this

line. If a circle be drawn with centre G and radius OG it will

cut this perpendicular in two points, and 1? so that two possible
E.M.F.S can exist for the motor, the one OM smaller than OG, the

other OJlf larger than OG. The current in the case shown leads

192
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on the generator's E.M.F. in the first case, and lags on it in the

second, and further it is evident that it will lag on the motor's

E.M.F. while that E.M.F. has any value less than the value PM, and
will lead on it when the E.M.F. has a greater value than PM.

Fig. 233.

Again, the point corresponds to economical working as before

shown. We thus see that for a given power and generator E.M.F.

there are two possible motor E.M.F.S, the one greater than the

generator's and associated with a current leading on the motor

E.M.F., the other less than that E.M.F. and associated with a current

lagging on the motor's E.M.F. We must now see how to find the

relation required for various intakes of the motor from zero to the

maximum possible under the given conditions, namely that given

by the relation g= 1JI cos a.

Construction for motor's E.M.F.* We can show that the

following construction will enable us to find for any given load the

corresponding values of the motor's E.M.F. Ji and the length
'

which is proportional to the line current, when the given values of

cf and a are known. Draw the line OG (Fig. 234) to represent to

scale the E.M.F. of the generator, and draw two lines OA and AG
to meet in the A, the angles formed with OG being each a. Find
the value of the given load and let it be denoted by k*, where
&2 must be interpreted on the scale of pressure on which OG is

measured. Thus if the power be W watts and the impedance of

the line be /, the value of k2 that must be interpreted on the

pressure scale selected is W/I. Take a length equal to k sec a and
draw a circle with centre at A and having the tangent from of

this amount. If any point M be selected on this circle, we shall

* Mr G. T. Bennett.
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show that the value of the motor's E.M.F. will be given by the

length of the side OM for the given load, etc., while the corre-

sponding value of &, that is, of /-times the current, will evidently

Fig. 234.

be GM. It will be seen that for one value of GM there are two

possible ones for M as before shown.

Consider Fig. 235, where the construction as far as the triangle
is concerned is repeated, and in addition the former figure for the

ordinary relation between the different quantities and their pro-

jections is shown. We then have :

Fig. 235.

f = PM.MQ = OM. cos OMP . MG cos a

= -OM.cos(OMG + a) . MG . cos a

= - OM. MG (cos OMG . cos a - sin OMG . sin a} cos a ...(1).
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Consider first the expression OM . MG . cos OMG. From the

triangle OMG we have

OM.MG. cos OMG = J (ON2 + MG* - OG*).

But since C is the mid-point of the side OG, this becomes

(MC*-OC*) ........................... (2).

Again, from the triangle MAC we have

MA* = AC* + MC* -2AC. CL,

where ML is drawn perpendicular to AC. But LC is equal to

MN, and thus we have

MC* = MA* - AC* + 2AC . MN.

Hence (2) becomes

MA 9 - AC* + 2AC. MN - OC*.

But AC* + OC* = OA 2
,
hence we have

OM.MG. cos OMG = MA*-OA* + 2AC .MN ...... (3).

Now consider the expression OM.MG.s'mOMG: it evidently

gives twice the area of the triangle OMG, and is thus equal to

OG.MN; but OG is twice GC, and hence it is also

2CG.MN ........................... (4).

Substituting according to (3) and (4) in (1) we have :

k* = - {(MA*
- OA* + 2AC. MN) cos2 a - 2CG . MNsm a . cos a}.

But CG=CAcota.
Hence

CG sin a . cos a = CA . cot a . sin a . cos a = CA . cos2
a.

Hence finally we have

But since OA, k, and a are constants, MA is constant, and thus
M describes a circle. From Fig. 234 it will readily be seen that

(OA*-MA*) is (OA*-OT)* or is OT*, or if T be the length of

the tangent on the circle, k=Tcosa, or T=&seca. Hence the

proposition has been proved.

Relation between current and motor's E.M.F. We can
now derive the following graphical construction for finding the
relation between the current expressed in terms of C and the
motor E.M.F. Draw the triangle OA G (Fig. 236) as before.

Divide up A G into a convenient number of equal parts depending
on the different values of the currents and loads that are required
to be considered. With A as centre draw in a set of load circles

numbered from / in the figure, and with centre G draw in a set
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of circles for the different assumed values of $*, these circles are

numbered from 1 upwards. Of the power circles that which

passes through the point G will be the one for zero power and

130-56 89
Value ofMm Thousands of Vo/ts

10

Fig. 237.
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the point A will give the maximum power corresponding to the

given conditions, namely that for which C and Jt are equal (p. 291),
as is evident from the figure. Fix on any one of the power circles

and mark the points where it is cut by the successive current

circles, the corresponding distances measured from to the points
of intersection will give the values of the E.M.F. of the motor.

These can be easily pricked off with dividers and transferred to

squared paper so as to exhibit the relation between Jt and C (or
the current) for each of the power circles. A set of curves thus

obtained is shown in Fig. 237 for the case where the angle a was
60 as before, the E.M.F. of the generator being 5000 volts. The
curves are a family of quartics and they evidently consist of two
main parts, the one convex to the axis of pressure the other

concave. The upper part corresponds to the case of unstable

running and has no practical application, parts of the lower

portion of the curve have, however, important properties. The
minimum points of these have been joined by a dotted curve

which is also a quartic. These points are those for which the line

current is a minimum for the given power, and at these points the

current is evidently in phase with the generator's E.M.F. since at

them the angle between the lines MG and the current vector will

necessarily be the same as that between 00 and AG, namely a.

These dotted lines hence divide up the diagram into two parts, for

the one the current leads on the E.M.F. of the generator, for the

other it lags. The middle point is that for the maximum power
possible under the given conditions.

Fig. 238.
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Zero power lines. It can readily be seen that the quartic
for zero power consists in fact of two ellipses or parts thereof. For
consider the two cases of zero power for which the vector diagrams
are given in Fig. 230. From the triangle GOM we have

c?
2 = Jl* + %* - ZJl% cos GMO.

But in this case GMO is (90 + a) and hence we have

JP
where the sign depends on which figure is taken. Considered as

equations between ?C and Jl these denote two ellipses as shown in

Fig. 238. Since the coefficients of Jl and C are the same, the

axes of the two lie at right angles and at 45 to the axes of the

figure. It can readily be seen that the two axes of the ellipse are

and ,

sin a

In the special case for which the complete set of curves has been
drawn these become

5000
and

5000
or 3700 and 13,800,

Vl'86
' '

VO'24

which can be verified from the figure.

It is interesting to see what form these V curves take for

different values of the angle a. To show this, in Figs. 239 and
240 are given the lower parts of two sets of these curves for

7234
VaJue ofM in Thousands of Volts.

Fig. 239.

values of 45 and 75 respectively. It will be noticed that the
curves get steeper the less the angle a. Thus the more inductive
the circuit is the flatter are the curves.
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Actual case. The curves given in these figures refer to an
ideal case, namely where the motor has no applied load when the

external load is removed, that is, is devoid of internal loss, where it

can have its E.M.F. indefinitely increased to any desired extent,

1 3 0- 5 6 8
Value ofMm Thousands of Vo/ts

Fig. 240.

where the reaction of the machine is capable of being represented

by a constant (the synchronous impedance), and when all the

quantities involved are sinusoidal. In a real case none of these

factors hold good. Even with no applied load there is an internal

18

16

I
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circuit
;
the reactance of the armature is far from a constant

;
and

lastly the curves of pressure and current are not sines. Hence
the actual curves will not be the same, in particular the range
over which they are obtainable is much more restricted than
the figures show. It is usual to plot these curves not in

terms of the current and motor E.M.F. but in terms of the line

current and the exciting current of the motor. This will be

dependent on the E.M.F., though of course not linearly, but in

a manner which can readily be found from the saturation curve

of the machine. Two such curves for a very small synchronous
motor are given in Fig. 241. They show that the general
character of the relations are as described. The well-marked
minima fall to the left as the load is increased. In this case the

unloaded condition was still one of considerably proportionate

loading owing to the rather large internal core and friction load.

With large machines these curves much more nearly approach the

ideal ones. The various points above referred to cause the con-

ditions of running to be more or less unstable long before the

higher parts of the curve are reached.

Free periodic oscillations of motor. In the consideration

of the operation of the synchronous motor that has just been
taken it was assumed throughout that the condition of operation
was such that the speed of the machine was absolutely constant

for each load. We will now consider the case where such constant

running is in some manner disturbed, and for this purpose will

assume that the nominal induced E.M.F.S of the generator and
motor are both kept fixed in value, that the power the motor is

delivering is constant during any small disturbance, and that the

disturbance produced consists in a very small alteration of the

phase angle, 9, from the value it must have for the steady conditions.

On p. 285 it was shown that for steady consumption of power by
the motor the expression for that power can be written as follows,

T . cos (a
-

0)
- JLcos a}.

Let the equilibrium of working be suddenly upset by a small

alteration in the angle 6 of the amount ?=S#, the motor will

now have a different rate of working given by

W+ dW or W +^ .

The difference between these quantities, or f -^- ,
will be power

which the motor is either receiving in excess from the generator
or is delivering thereto, depending on the sign of ?. This difference

can be written
Me

3in(a-0) (1).
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In the absence of any sources of loss of energy this excess can

only go to alter the kinetic energy of the motor's armature. Let
H be the -steady angular velocity of the same just before the

change and let II (1
-

X) be the value of it at any moment during
the subsequent motion. The value of X is always small. Consider

the vector diagram of the E.M.F.S (p. 284), which is such that its

appropriate angular velocity is necessarily p where p is 2?m
;
the

angular velocity, O, of the armature will correspond to the angular

velocity p in the diagram, thus the angular velocity Xfl will

necessarily correspond to one of \p in the diagram. But this

must be the rate at which the assumed small alteration, f, in 6 is

changing after the disturbance, and hence we have

d? d\_l d2
Z

dt~
"- P) (

'

dt-p'di*'

The quantity, X, is a function of the time, and the kinetic

energy possessed by the armature at any moment will be given by
^/ O2

(1 X)
2

,
where / is the moment of inertia of the armature.

The rate of change of this will be

But since \ is always small, if we denote the normal kinetic

energy in electrical units of work possessed by the armature by
the letter K, we have

*Lir - 9 v d̂

dt '~dt'

d 2K d*
which ogives -=- K = ----

. = .

dt p dtf

But this rate of change of the kinetic energy must evidently in

this case be equal to the above calculated difference of the

electrical rates of work, which leads to the equation

,(-*>-^o ............... (2).

Substituting u* for
*^_ <

~
*>

,

Z-fl . L

we finally get as the differential equation connecting the phase

angle and the time the following expression,

This equation has two solutions depending on the sign of u\ If

this is negative, that is, if 6 is > a, the solution is exponential and
of the form = Aeut

, showing that the disturbance results in the

motor stopping ;
in general for stable working 6 is < a and thus

sin (a 6) is positive, the solution is then

f = Z . cos (ut + 77),
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where Z is a constant, being the amount of the initial disturbance,

and
77 is some fixed angle. This shows that the disturbance

results in an oscillatory motion with a frequency given by the

coefficient of t in the expression cos (ut + 77) divided by 2?r. Hence
the frequency of the resulting oscillatory motion is given by

or

,7 /n./&^sin(a 0)
or, since p = ZTTTI, iv = A/

-

far K T
'

''

In the absence of anything tending to damp out these oscillations

they would continue for ever with constant amplitude.

If instead of considering the complete system formed by the

generator, mains and motor we consider the restricted system
consisting of the latter only, which would be possible in the case

where the motors were small compared with the generator, instead

of the E.M.F. of the generator we can substitute the constant

impressed pressure, Q ,
that is maintained at the terminals of the

motor, and in that case the value of / is the impedance of the

motor's armature. Such a case is afforded by the running of

a rotary converter on constant pressure mains. As will be seen

in Chap. XXIV the load in that case is the direct current output
of the machine.

The above expression can be written in other approximate
forms. Thus in general the angle 6 is small and the angle a is

nearly a right angle, hence sin (a 0) is nearly unity : further the

E.M.F. of the motor and the applied pressure in such a case will be

nearly equal, and if we denote by ^ the short-circuit current of
>

the armature at full pressure it will be given by y ,
and hence

the expression for the periodic time of the oscillations will be

T =

If the kinetic energy stored be reckoned in joules and if the
moment of inertia be denoted by M, we have K = ^M . H 2

. Or
putting $ for the revolutions per second made by the armature,
we finally get

If the value of M be taken in kilogram-meter units we must

multiply the value of M in the above by the factor 100 and hence
we get another form for T, viz.
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This result has been expressed in terms of other quantities
which are in some cases more easily applied. Let v be the linear

velocity of the outside of the armature, d the polar pitch per pair
of poles, then we can see that the distance d is traversed at the

velocity v in the time 1/n and hence v = dn. Again, let R be the

radius of the armature and let us put m for the quotient of the

moment of inertia M by the square of this radius, on substituting
in the above, noting that v = 2?r . S . R, we get

As an example consider the case of a three phase synchronous
machine operating with a mesh connected armature at a terminal

pressure of 350 volts
;
the output is 300 kilowatts, the alternations

25, the revolutions per minute 500. The reactance of the armature

per phase is 0*1 and the resistance 0*01, hence the value of / is

practically 01, and the angle a. is about 84. The moment of

inertia of the rotating part of such a machine would be about

8,000 foot-pound units, and hence the energy stored at the given

speed would be

8000 x 4rc2 x 250,000
r 35

'
000

2 x 3600 x 32-2

Since a foot-pound is T35 joules, the stored energy, or value of K,
is therefore 475,000 joules. In expression (3), p. 301, it will be
seen that the part

will be constant for all conditions of operation and in this case the

value of it is

/3 x 25 x 350
A/-T Atr rr.- or 019.V 4?r x 47,500

The "3" is put in as there are three phases concerned. Hence the

periods per second of the oscillations will be given by

019 ^j/l sin (a
-

0),

where Jl has to be assumed and the value of 6 will depend on the

load that is taken in accordance with equation (1).

Let the motor be excited to 350 volts and first take the case

of light load, the phase angle will then evidently be zero from

equation (1) and the periods will be given by

019\/350sin84 or 019 V350 x 0'9945,

that is 3'5. Let the full load of 100 kilowatts per phase be taken,
then from (1) we have

3502

{cos (a
- 0) - cos a}

= 100,000 x 01,



THE SYNCHRONOUS MOTOR 303

or since a is 84 we have

cos (-0) = TV<& + 0104,
this leads to

cos (a
-

0) = 0-185 or sin (a
-

6) = 0*982,

and hence N = 3*5 nearly, as before. It will be seen that the

value of N is practically unaffected in this case, being very

slightly reduced in amount.

Now let the motor be over-excited and let M be 400 volts.

At no load we then have

cos (a
-

0)
= $$ cos a = 0119,

which gives sin (a
-

0)
= 0*993.

Hence N is 019 V400 x 0*993 = 3*8,

or is somewhat increased. As before consider the full load to be

taken, we then have

400 [350 . cos (a
-

0)
- 400 (0104)}

= 100,000 x 01,

which leads to

cos (a -0) = 0190 or sin (a
-

0) = 0*981
;

hence N = 019 V400 x 0*981 = 3*76.

The value ofN is as before slightly diminished on loading.

In the case considered the angle a. is nearly a right angle and
it is seen that but little alteration is produced in the period by
means of loading. If this angle is less a more considerable

difference will be obtained. We will take the same case as the

last but suppose that while the impedance remains the same, the

angle has the value 70, the cosine of which is 0*342. Such an

angle would not occur, in all probability, in the special case con-

sidered. As before the no-load period is given by

019 \/350 sin 70 or 019^329,

that is 3*45. To find the full-load angle we have

3502

{cos (a
-

0)
-

0*342}
= 100,000 x 01,

which leads to cos (a 6) = 0*423 and hence sin (a 0) = 0*905.

The period is now 3*2, showing a considerable diminution.

Damped oscillation. The oscillations we have just con-

sidered would be such as would result from any sudden alteration

in the load on the motor and may be looked on as similar to the

free vibrations of an ordinary mechanical system. Hence if there

be any opposition to the motion corresponding to ordinary friction

in the mechanical case, the amplitude of the vibrations will

diminish gradually in amount till a new stable condition is

reached. It will be readily seen, from the analogy with ordinary
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damped harmonic motion, that in order that this effect may occur

it is necessary that there be an opposing force at each instant

which will be proportional to the rate of change of f, or that the
differential equation must contain an extra term and be of the form

in which case the solution will be of the form

?= e-fl .Z.cos {(u
z

-frf t -
77},

showing that while / has a positive value, the amplitude of the
oscillations will gradually diminish. We can readily see that such

a positive term can be produced in certain ways. In the discussion

of the last case it was assumed that on diminution of the speed
the power demanded by the load was unaffected, that is the power
taken was the same when the speed of the motor altered. In

general this will not be the case. If the load is an ordinary
mechanical one the power demanded will be nearly proportional
to the speed, and if it is electrical, such as is the case with the

rotary converter, it will vary more nearly as the square, since both
current and pressure will increase with the speed. Hence if W
denote the normal steady demand for power at the normal speed
ft and if W be the power demanded at the increased speed ft + o>,

and further if we assume the demand varies as the rth power of

the speed, we evidently have

W-WQ
= k.(l + a>)

r-kMr
,

or for small alterations of speed

W-WQ
= k.rW-i.co,

that is W-W = C.w.

d ft

But we have ft is oc -
at

and hence (ft + o>) oc
-^ (d + ),
\AJ\J

d(hence co is oc -=f .

at

Thus the presence of a power demand which is not constant
70

results in the addition of a term a
-^

to our equation, where a is

a constant. In the case assumed the sign of the coefficient

cr is positive since increase of speed means increase of work, and
thus a retarding effect on the motion. It is possible to have
cases in which this coefficient was negative. Suppose, for example,
that the load consists of a generator in which the flux responds
slowly to the alteration of exciting current owing to eddy currents
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in the field magnets. When the speed of the motor falls,

the terminal pressure of the machine would fall and hence
the excitation. Owing to the eddy currents in the iron of the

field magnets, the flux, and hence the E.M.F., cannot fall to the

value appropriate to the new speed, and hence it may happen
that extra retardation is experienced by the motor when its

speed is falling in this way ;
and conversely, owing to the delay

in the field rising with increase of pressure, the motor would have
less than its appropriate work to do at any speed while rising in

speed. Thus the term instead of having a positive coefficient has
a negative one. In such a case the solution of the equation is

showing that the amplitude of the original disturbance goes on

increasing without limit, and hence eventually the condition of

working becomes unstable.

The amortisseur. There is one method by which a definite
j *j

positive value to the coefficient of the
-^

term can be produced.

For simplicity take the case of a polyphase machine in which,
as we have seen, the armature currents tend to produce a definite

field fixed in space relative to the poles when the speed is

constant. If any variation in the speed of the machine occurs

this field will move in space with an angular velocity equal to the

change of angular velocity that has taken place. It follows that

in the present case there will be produced an angular velocity of

this field proportional to
-g.

This field moving relative to the

poles will tend to produce E.M.F.S in any circuits thereto fixed, and
if the poles were unlaminated, would thereby produce eddy
currents in those poles. The consequence would be the pro-
duction of a torque due to the reaction between the moving field

and the currents produced thereby which torque would act in

such a manner as to oppose the change of motion. It follows that

in such a case there is an expenditure of power which is propor-
7t* 70

tional to the value of ~ or can be written e -37,
at at

The production of these eddy currents is not desirable in the

poles themselves, and further owing to the low value of the

conductivity such currents would be comparatively small in value,
the form of the paths in which they flow would also not be the

best possible for the purpose of interreaction with the field of the

armature. In modern machines the poles are very usually
laminated, but specially designed circuits are provided in which
the desired currents can flow without much loss of energy. This
is arranged by threading through the poles sets of copper bars so

L. 20
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as to form a sort of grid very like a portion of a squirrel cage
armature of an induction motor as shown in Fig. 242. In this way
the eddy currents induced are constrained to flow in definitely

assigned paths of the best form to produce the desired damping
effect. Such a grid is called "an amortisseur." It is evident
that there is some best form to give this grid, for suppose the
whole surface of the poles to be provided with a perfectly con-

ducting surface, then it would be impossible for the currents

Fig. 242.

induced in it to produce any damping effect since no energy
would be absorbed, it follows that there must be an optimum
arrangement of the amortisseur, and this is generally found by
experiment. It may be noted that merely surrounding the poles
with a ring of copper will not in general be of much use, for with
small limits for the maximum of the oscillations the total change
of flux in such a large circuit, due to the angular oscillation of the

armature, would probably be very small, hence it is necessary to

provide many possible circuits on the polar face in order that the

swinging flux may always find a circuit in which to produce a

change of flux and hence a retarding torque.

It may be noted in passing that such an amortisseur circuit

is an additional preventive against damage should the machine
considered be a dynamo working in parallel with others. For in

the case of any failure in the drive or excitation the armature will

be supplied by the polyphase currents and will act in the same

way as the stator of an ordinary induction motor, the bars on the

field magnets forming a squirrel cage rotor, and hence the machine
will run on as an induction motor without any danger.

The equation (p. 304) now takes the form

where a and e are the coefficients just found. This reduces to
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or writing f= ^-~-', it reduces to the form given, and hence

has the solution there indicated.

The frequency is thus slightly different from the case where

damping is absent, but the quantity/is very small compared with
u in any practical case, and hence the new frequency is practically
the same as that in the previous case.

It will be noticed that e increases with the load, for the field

due to the armature increases with the current and with that

field will increase the currents induced in the amortisseur, hence
we may approximately say that the value of e increases as the

square of the load, and thus stability, depending on the amount of

the damping, will increase greatly as the machines are loaded up.

Forced oscillations. In addition to these free oscillations

of the armature we may have others corresponding to the forced

ones of a mechanical system. Such periodic impressed forces can
arise in many ways, such as from a varying turning moment of the

prime movers, the hunting of the governors of the same etc. The
effect will be to produce forced oscillations of the armature and
the conditions can be found as follows.

Let the power supplied to the motor have a periodic term

superposed on the necessary constant term that corresponds to the

constant load on the same, and let this periodic power be given by
Q . sin qt. Then instead of equating the excess power of the

motor to the increase in kinetic energy of the same as in

equation (2), we must equate these terms and this periodic one
;

this leads to the equation

for the determination of the resulting motion, where for the sake

of shortness the letter P is used for the expression in equation (1).

The letter e denotes the value of the coefficient concerned in the

dissipation of energy in the polar faces as just described, which we
saw was proportional to the rate of change of the latter angle f.

The solution of a differential equation of the form

Hence in this case we have the solution in the form

sin (qt 77),

202
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and in addition there is necessarily the "complementary function"

which in this case is merely the equation for the free oscillations

which we will consider as damped out. The phase angle, ij, has

no special interest for the purpose of the problem. The period of

the impressed motion is thus the same as that of the fluctuation

and its amplitude is

This can be written in a more convenient way. For from

equation (3) it will be seen that

P. 2K

where N is the natural period of the motion assumed undamped,.
since, as before mentioned, with the moderate damping that

occurs in these cases the period of the damped oscillations will be

very nearly the same. Again, if M denote the period of the

impressed fluctuation we have q = 2?rif
,
and thus the expression

for the amplitude becomes

Q

Consider the effect of varying the moment of inertia of the motor.
When this is very small its natural period is very high, and hence

the term -~ will be negligible and the amplitude will be given by

Now let the moment of inertia be gradually increased; the quantity

(1
-T^J

will diminish, and hence the amplitude increase till,

when the two periods M and N are equal, the amplitude is given

by or is only restrained by the eddy current action from being

infinite. In general the amplitude due to such a condition would
be so large as to prevent the present theory holding, and the

oscillations would be so great that the machine would fall out of

step, being carried outside the possible range of stability, hence this

resonance between the natural and forced periods must be carefully
avoided. With still further increase in moment of inertia the

amplitude will go on decreasing continuously. In most ordinary
cases the natural period of the machine falls well outside the latter

limit as compared with that of any periodic variation in the turning
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moment of the prime movers driving the generators. In the

event of any approach to a condition of resonance the natural

period of the motor can be altered by means of either increased

fly-wheel effect or by altering the value of the quantity P in the

equation for the amplitude. This may be done, as will be seen by
reference to equation (3), by either altering the excitation or by
altering the value of the impedance in circuit between the

machines by the insertion of reactance.

The condition of good running in a synchronous machine thus

resolves itself into two parts. To ensure stability as regards the

free oscillations efficient damping must be provided by the use of

appropriate circuits on the poles, while to ensure absence of

trouble from the forced oscillations, care must be taken to so

arrange the natural period of the machine that it is far from being
near any of the possible periods that may arise in the prime
movers.



CHAPTER XXIV.

THE ROTARY CONVERTER.

A VERY important form of synchronous motor is that known as

the Rotary Converter. Let us suppose that we provide an

ordinary direct current dynamo with two slip rings attached to

two opposite points of the armature. Then brushes attached to

these rings will deliver an alternating current the periodicity of

which will be the same as the number of rotations per second
made by the dynamo. Hence we could use such a machine to

transform direct currents into alternating by merely driving it

from a direct current source of energy; the periodicity of the
current would depend on the speed of the machine and could be

adjusted by altering the exciting current by means of the usual

shunt regulating resistance, the applied direct pressure being
constant. On the other hand we may supply alternating currents

to the slip rings and let it run as a synchronous motor, care being
taken to get it in the proper phase relation in the way already
described, the speed of the machine being regulated by the shunt
resistance. Under these circumstances we could take direct

currents out of the ordinary commutator, and thus turn alternating
currents into direct. In the latter case it is evident that the

speed must remain constant being the synchronous one; no
alteration of speed will be produced by adjustment of the

excitation by means of the shunt resistance, but from what we
have previously seen, such adjustment will result in alterations of

the phase angle between the alternating current and pressure.

E.M.F. relations. Several points must be considered, thus
in the case we have taken of a machine with two opposite slip

rings it is evident that the maximum of the alternating E.M.F. is

equal to the value of the applied direct current one, hence the
virtual alternating pressure will necessarily be less. The ratio

that the virtual alternating pressure bears to the direct one

depends partly on the form of the induction curve of the pole
faces. The simplest law to assume is that the induction through
any plane in the armature passing through the shaft is a sine

function of the time. This is not accurate, and various laws
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connecting the angle and the flux can be obtained by altering to

some extent the angle of the pole-pieces. On this assumption of

a sine distribution we see that the alternate pressure for the case

of two slip rings will be l/\/2 times the direct current one.

If we place three such rings attached to points equally spaced
round the armature, three-phase currents will be obtained from

them. Again, if four rings be used, at 45 pitch, we can use

opposite pairs to deliver two-phase currents.

In Chap. IX we considered the value of the E.M.F.s produced by
a distributed winding in an alternating current machine, but it is

more convenient to again derive the relations at this point. . Take
as an example a two-pole ring armature as shown in Fig. 243, and
let it be assumed that the flux from the poles into the armature

is such that the amount entering any single turn is a sine function

of the angle which that turn makes with the axial line OA, that

is if a turn is at the point Q the flux in it will be proportional to

the sine of the angle between the line OA and the line OQ or

Fig. 243.

proportional to sin <. It follows that the E.M.F. induced in that

turn when it is rotating with uniform velocity will be proportional
to cos

c/>,
or can be written as e . cos

(/>,
where e is the maximum

E.M.F. in a turn, or that produced when the turn is on the line OA.
Consider a small coil subtending the angle d<f>,

and let the turns

per radian be er. The E.M.F. in the elementary coil at Q will then
be ae . cos

(f>
. d(f> for e cos

c/>
is the E.M.F. in one turn and a . d<j> is

the number of turns in the coil. If it is required to find the
direct current E.M.F. this expression must be integrated between

the limits -= and ^ which leads to

E f
5

= o- .e \

J w
COS

(f)
. d<f)

= 2(7 . 6.

This expression agrees with the usual formula for the E.M.F. of

a direct current dynamo. Consider still the case where the
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armature is of the ring form, and let the maximum flux passing
across the armature be O. The maximum flux through any coil

will then be O/2. Let the armature make n revolutions per
second, then since the flux is assumed distributed in a sinusoidal

manner the value of the maximum E.M.F. in a coil is given by
<l>

e 27rn . -=- or 7rn<&. Hence we have E= 2?r . n . a . <E>. But if z

denote as usual the number of peripheral conductors we have
z = 27Tcr, and hence E = <&nz, which is the usual form of the

equation for the E.M.F. of a direct current machine.

Now let two points be taken on the winding such that the

angle between them is - - where m is an integer, to each such

point can be attached a ring on which presses a brush as before

considered, and there will be m rings in all. In such a coil will be

produced an alternating E.M.F., and it is evident that this E.M.F.

will have its maximum when the axis of the coil, OM, lies on
the line OA. The value of this maximum E.M.F. is evidently

given by
rm

.e I

J
cos .

<f>
.

. 7T
or is Em = zo-e . sin .m
If the coil has its axis at the angle to OA as shown by OMl the

E.M.F. will then be
Em cos 6 or Em cos .pt,

and hence the E.M.F. will be a simple harmonic one with a period

equal to the turns per second made by the armature.

The virtual value Sm of this E.M.F. will be

or if we express it in terms of the direct current E.M.F., E, pro-
duced by the same machine we have

E . 7T

0m = -rb> SID. - .

\/z m
From this we readily deduce the following numbers for the virtual

pressure existing between adjacent rings in such an armature.

No. of rings m E.M.F. ratio

2 ^= 0707

3 J ,/f
= 0-612

4 J=0-5
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In practice the rings are some multiple of 2 or 3 so as to

permit the machine being used on ordinary polyphase systems.

A simple two-pole rotary would have to run at far too high a

speed when it is of other than a small size, and hence such machines
are almost universally multipolar ones.

Vector representations of E.M.F.s. The relations between
the values and phases of the E.M.F.S in a rotary converter are well

seen by reference to the corresponding vector representations.
For example let a circle be taken, Fig. 244, whose diameter AB
is equal to the direct current E.M.F. E, and let an equilateral

triangle be drawn in it, then the maximum of the E.M.F.S between
the rings attached to the three-phase converter will evidently
be given by the lengths of the sides of this triangle, and since

the virtual E.M.F. is -^ times the maximum on our sinusoidal
V^

assumption, it follows that the E.M.F. between adjacent points

in the three-phase case will have a maximum value
fi

1
/*-{

and

a virtual value . .

\

In the same way Fig. 245 gives the

vector diagram of the four-phase case, and it is very simple
to verify the relationship between AC and AB that we have

just obtained for this case. Similarly Fig. 246 shows the six-

phase case, from which the various possible connections can be

seen at a glance. In all these cases the student will notice that

the centre of the circle is a point of symmetry, in the same way
that the various connections of polyphase transformers considered

in Chap. XIII had a neutral point or point of symmetry. On com-

paring the diagram of the potentials given in that chapter it will

readily be seen that they are such in relative magnitude and

phase as to render them suitable for connecting to machines of

the type we are considering, and in fact this is the chief use of

many of the arrangements therein considered. The fact that both
the transformers and the machines possess definite neutral points
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is one that it is important to keep in mind. Suppose that by
some want of symmetry the two points are not always at the same

pressure, then it is evident that this varying pressure between the

two neutral points will cause currents to flow in the system
in addition to those incidental to the working of the machines.

It is of course rare for there to be any great want of symmetry in

such cases, but exigencies of manufacture and other circumstances

may cause small deviations from the ideal symmetry that we have

considered (see Chap. XI) and lead to the existence of these

parasitic currents. As another example of their possible occur-

rence take the case of a converter working from a dynamo of higher

pressure by means of auto-transformers. In this case it will

evidently be necessary that the neutral points coincide throughout
the system, hence the leads from the auto-transformer must be

taken off from it symmetrically with reference to its middle point
in order to avoid the flow of the balancing currents. If the

connection between the two be by means of tranformers, no such

difficulty is experienced, since it is then impossible for the parasitic
currents to flow, all that can happen is a variation of the potential
of one or other neutral points.

Current relations. The question of the magnitude of the

currents that will flow in the different sections of the armature
must now be considered. As an approximation first take the

case where the load carried on the alternate current side is non-
inductive so that the power factor is unity when the load is, as it

must be in a symmetrical converter, a balanced load. If C denote

the direct current flowing under the E.M.F. E, and if ^m be the

virtual value of the alternate current in any one of the sections of

the armature flowing under the virtual pressure Sm ,
and if farther

we neglect the ohmic losses in the armature, we must evidently
have EG= m . n$)m ,

where m is the number of tapping points on
the armature. Hence we can approximately write

- or ,-m S m m
In the ordinary cases it is easy to find the line currents in the

same way as the corresponding cases of the ordinary three-phase
circuit. If the power factor is not unity it is evident that the

currents will be increased in the proportion of the secant of the

angle of phase difference.

Reaction and ohmic loss. Two points must now be
considered. Firstly, it is evident that the armature reactions

of the direct and alternating currents oppose, since the one set

act as generator currents, the other as motor currents, also

the actual current in any wire is the difference of the two
sets of currents, consequently we may make the armature far
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stronger magnetically than we could with an ordinary direct

current machine of the same output, though the commutator
must be just as large. The large number of conductors on
the armature will enable us to use a very much smaller field

magnet, since the flux of magnetism can be reduced for the

same E.M.F. In fact a very important factor in the design of a

rotary converter is the peripheral speed allowable, rather than the

conditions of current collection. The second point is also con-

nected with the differential action of the currents, and is the

question of ohmic loss. We will take the case of unity power
factor and will investigate the relative ohmic losses in the

armature when it is used as a rotary converter with in rings, and
when used as an ordinary direct current generator. Let Fig. 247

represent one coil of the armature and let P and P^ be the two
end wires in one of the m sections of the winding, if there be
m rings the angle POPl will be 27r/m for a two-pole machine.
Let OM be the central line of the section and consider the current

in a wire at the point Q which is at such a position that QOM is

a definite angle <; further at the instant considered let the

central section, OM, make the angle 6 with the axis, AO, of the

machine. In the wire at Q there will coexist two currents, a
direct one and an alternating one ;

if the direct current that the
armature is producing be denoted by C that in the wire will

be (7/2, and if ^ be the virtual value of the alternating current in

the wire its maximum will be \/2 . ^.

For the sake of completeness let us suppose that the circuit is

balanced, but that there is a definite phase angle, A, then from p. 314
it will be seen that the maximum value of the alternating current

will be cosec . sec X . C where C is the direct current flowing-m m
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up to the brushes, BJ5. The current in any one of the wires of

the armature can then evidently be written

c = = \ 1 cosec sec X cos (6 X)
2

(
m m

since half the direct current flows down each half while the

alternate current is that actually flowing in the section PP^,
For the sake of shortness write this in the form

c =
^{l-a.cos(0-X)}.

In order to find the mean rate of production of heat in the coil

PPi we must 'first find the mean square of the current for the

single wire at Q as the coil turns through half its revolution, and
then find the mean value of this for the different wires con-

stituting the coil.

To find the first mean value we must integrate c2 over the

angle from the point where M coincides with brush Bl to the

point where it coincides with brush B and divide by the angle

traversed. The two limits are evidently i -=
cf> J

and i + <p )

while the angle traversed is TT. Hence the mean value of the

square of the current in the wire as it rotates will be

L
.
91 [

2

{i
_ 2a . cos (0

- X) + a2
. cos2

(0
-

X)} dd.

-O)
The indefinite integral is

and hence on substitution it will be seen that the mean value

reduces to

7T
'

2

We must now find again the mean value of this for the whole
coil PPl . To do this the expression must be integrated over

77" 77"

the angle 6 between the limits H and -- and divided by
2-7T

mm
. It is evidently only necessary to consider the part con-

taining the angle < and the value of the integral for that

part is

7T

> \ 7 ,
m

f
. /7T \ . /TT

X) d* = - sm ~ + X + sm - - X

m . IT= sin cos X.
TT m
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Hence the final mean value for the whole coil reduces to

a2
)

or substituting for a we finally get

C2 L 16 8 . TT

-j- \ 1 -I
- cosec2 sec2

4
[

7T
2 m2 m

as giving the mean rate of generation in the coil. The heat

generated in a simple direct current armature would be simply

(/^\

2

-~
J

,
hence for the same heating limits it is evident

that the reciprocal of the expression in the brackets will give the

relative loads that can be carried by converters with different

number of rings, in terms of the corresponding direct current load.

The case where the load is practically non-inductive is the most

interesting; in this case the ratios are as given below.

Direct current 2 rings 3 rings 4 rings 6 rings

1-00 0-85 1-32 1-62 1'92

Since the ratio depends on the secant of the angle of lag it

will be seen that a leading or lagging current soon brings down
the possible load of the machine. Thus to find the angle of lag
for which a three-phase rotary will have the same current carrying

capacity as the corresponding direct current machine we have the

equation

-f = ? cosec2
. 60. sec2

X,
TT^ y

which leads to cosX = 0'8 or X = 36.

It will be noticed that the capacity increases rapidly with the

rings and for example a 6-ring rotary has nearly double the output
of the corresponding direct current machine. The use of the three

to six-phase transformations on p. 160 will now be seen. Which
of the different methods there described for obtaining six-phase
from three is used is a matter of convenience. The diametral

has the advantage over the double delta in that it enables one
to use higher pressures and thus reduces the size of the leads

necessary.

Starting. We must now briefly consider the question of

starting up a rotary. Let the rings of such a machine be con-

nected to the mains, the alternating currents in the armature will

induce currents in the pole-pieces of the machine, and there will

be a torque produced just as in the induction motor, but the pole-

pieces are unfavourably formed for such currents to be very
effective in producing a torque, so that although the torque is

sufficient to speed up the machine to synchronism, when the field
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circuit can be closed and the machine will act as a direct current

one, it is at the expense of a very great call on the mains for

current. This causes bad regulation in the supply system. It is

possible to largely diminish this current by means of the starting
auto-transformers, one in each phase, that have been already
described in connection with the induction motor. But there are

two other difficulties in this method of proceeding. Firstly when
the machine is started in this manner, the field circuits being open
act as a secondary coil of a transformer, and since the number of

turns in them is many times the number of turns on the armature,
a very high pressure is produced in them. Secondly, when a rotary
is started up in this manner it is manifest that the polarity is not

definite, and this is a very important point in view of parallel work-

ing. It appears then that this method of starting is not desirable.

If a source of direct current is available we may use this to drive

the rotary up to the speed of synchronism as a direct current motor,
the parallelizing being conducted as described in the chapter on
the parallel running of alternators. In many cases such a direct

current supply is available from a storage battery, if it be absent

we may install an induction motor direct coupled to a small direct

current dynamo of just sufficient power to run the rotaries up to

speed.

Pressure regulation. The condition that is required to be
fulfilled by the direct current circuit of a rotary is in general that

it shall supply constant pressure at its terminals, or in some cases

even a pressure that increases with the load. Since the value of

the alternate current E.M.F. is definitely related to the direct current

one, it is evident that the necessary increase of the latter as the

load comes on could be provided for by altering the alternate

current pressure in an appropriate manner. This is in some cases

done by supplying the different phases of the rotatry with suitable

auto-transformers provided with sets of terminals giving the desired

range of pressure with proper intermediate steps in the manner
described in Chap. VI. The regulation is effected by means of

a contact arm moving over the terminals of the successive tappings,
this arm being commonly actuated by a small induction motor.

Such a form of regulation is not in general automatic.

A second method of attaining the desired effect would be
obtained by winding the direct current circuit as a compound
wound dynamo, in which case the pressure would automatically
rise with the current supplied on that side. Such increase of

excitation would of necessity result in an increase of the back
E.M.F. of the machine considered as a synchronous motor. Consider
the case shown in Fig. 248 where any of the lines OG represents
the constant value of the alternating E.M.F. on any phase of the

motor. Let any current be taken as given by the line MC, and
draw as before the triangle MGQ such that a is the angle whose
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tangent is the ratio of the reactance of the armature per phase to

its resistance. Draw the circle with centre G and radius equal to

the constant applied pressure. When the current and this pressure
are in phase the pressure line will be given by OG parallel to MC,
the corresponding back E.M.F. of the rotary being OM. With the

Fig. 248.

same current it will be readily seen that a small increase of the

rotary's E.M.F. consequent on an increase of excitation will result

in the triangle OMG becoming O^MG, and in this case the current

will lead the terminal pressure as shown by the arrowheads on the

current and pressure vectors. On the other hand, any small

diminution in the E.M.F. of the rotary will result in the triangle

becoming as shown at OMG, and the current will lag on the

pressure. It follows that if the current and pressure are in phase
for any definite load, an angle of lead or lag will result from the

alteration of excitation consequent on any alteration of the con-

ditions. The loss of energy in heat in the rotor's armature

depends, as we have seen, on the load and this phase angle between
the current and pressure, and for any definite maximum current

will be less the phase angle whether of lead or lag. It follows

that it is most suitable to arrange so that the phase angle is

nearly zero when the load is a maximum, and hence with less loads

the current will in this case lag after the terminal pressure.

Consider now Fig. 249 in which the angle a is only moderately

large, corresponding to a rotary with comparatively low reaction.

Let MC denote the full-load current, then it is desired that the

c,

phase angle should be very small, or that the corresponding
terminal pressure should be given by OG parallel to MC

;
hence

the rotary's back E.M.F. will be given by OM. Now let the load

be very small as shown by M&, it evidently follows from the con-

struction that the corresponding back E.M.F. is given by OlMl ,
and
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in this case it is possible that the latter will be greater than
But this is contrary to the conditions necessary for the operation
of the machine as a compound wound direct current generator.
Now let the armature have a much higher reactance as shown in

Fig. 250. On following the construction indicated by the same
letters as the last, it will readily be seen that OM can, as is

required, be greater than MlOl . Thus if the rotary has a proper
amount of reaction the conditions necessary to the rise of E.M.F.

with load with a desired maximum value of the phase angle
between current and terminal pressure can be fulfilled.

Thus the compounding can be successfully carried out if the

proper amount of reactance is provided in the phases of the rotary.
The reactance of the machine itself may be supplemented by the

provision of inductive coils placed in the mains leading to the

slip-rings, or by giving the transformers supplying those rings the

proper amount of leakage field
;
in the chapter on transformers it

will be recollected that such a state of things was shown to be

equivalent to the presence of reactance in the circuit.

Efficiency. For small machines the efficiency can be measured

by the direct observation of the input and output, but the method
is of little utility for rotaries of any size. The stray power methods
must then be used. The core losses and other losses incident to

rotation can readily be found by running the machine light as

a direct current motor at its normal direct current pressure, in

such a case the power being observed and a small correction made
for the ohmic loss in the armature, the value of these losses is at

once determined. The determination of the armature ohmic loss

can be calculated from the measurement of the armature resistance

and the use of the expressions found for the relative losses of the

machine as a direct current generator and as a rotary with different

power factors.

A combined test can be carried out on the lines of the ordinary

Kapp test of two similar shunt machines. In that case the

machines are coupled mechanically together, but when the

machines are rotaries this coupling can be effected by means of

the alternate current sides, as shown in Fig. 251. The direct

current sides are connected in parallel across mains that are put
in circuit with a battery or other source of direct current having
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the proper pressure and current carrying power, and the current

taken and the pressure are read by the ammeter A and the

voltmeter V. The alternate current sides, shown as three-phase,
are connected by means of three auto-transformers placed in series

in the connecting mains and with the other ends joined in star as

Fig. 251.

shown. Before making this circuit the machines are brought up
to synchronism in the ordinary way with lamps (not shown in the

figure), and when running in that state the three-phase sides are

connected. By alterations in the tappings on the three auto-trans-

formers and by suitable regulation of the fields of the machines,

any desired amount and character of load can be circulated between
the two. The amount of this circulating load can be measured

by the two wattmeters Wl and W2 ;
let this load in any case be

denoted by W. The reading of the ammeter and voltmeter being
C and E the total power that is being supplied is evidently EG.
This consists of the actual loss in the machines together with the
loss in the auto-transformers, and if this latter has been previously
determined for the different currents taken, the nett total loss in

the two machines can be deduced, let it be denoted by Wt . Then,
as in the case of two similar dynamos, if this loss is allotted half to

each machine, and if the efficiencies are taken as equal, the value

of the efficiency of either is given by

- "I

Hunting. Since the rotary is essentially a synchronous motor
the phenomenon of hunting, with corresponding surging in the
current received from the alternating mains, will be liable to occur,
but since the output is electrical and not mechanical energy, such

surging will produce effects concerned with the collection of the
direct current. Thus wrhen the machine is slowing, it will be

receiving more than the normal current, and while accelerating it

L. 21
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will receive a different one
;
similar variations will occur on the

direct current side. Hence any distorting effect due to the direct

current on the poles will thus vary in amount, and hence the

commutating field at the brushes will also vary. It may result

that conditions of sparkless commutation are no longer fulfilled

during some portions of the hunting period. It is thus of great

importance that such surges should be rapidly damped out, and

consequently amortisseurs should be fitted. It is especially

important to damp out any variations in the commutation fields,

a,nd the copper pole rings are often made especially heavy for that

purpose : in some cases extra short-circuited grids are put between
the polar horns as well as on the poles.

In the case of a monophase rotary it is evident that the power
received being no longer constant as on the polyphase machine,
but becoming at least zero twice per alternation, and in general

becoming negative, the rotary must act as a generator for those

intervals and hence there is bound to be a rapid to and fro

oscillation of the field of the machine in the air gap. This can

be greatly diminished by the amortisseur, but it will be seen

that satisfactory working is much more difficult to attain in this

case.

Motor generator. The production of direct currents from

alternating may of course be carried out by an ordinary motor

generator consisting of an induction motor coupled to a direct

current machine. Such an arrangement has the disadvantage of

being less efficient than the rotary converter owing to the extra

transformation of energy that is in general involved, also in such a

case the power factor is necessarily less than unity and in general
less than can readily be attained with a rotary. The arrangement
has, however, certain advantages in regard to the greater flexibility
of the pressure ratios between the two sides and is in general some-
what easier to deal with in the manner of starting, etc. The choice

of method must be made with regard to the special circumstances

of each case.
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Air core transformer, 80
Air gap, effect on choking coil, 51

Alternating E.M.F., production of, 1

Alternator, combined test, 138
on constant load, 248
deceleration test, 139

efficiency, 136
induction curve, 103
loss of energy in, 135
mean E.M.F., 103
no-load test, 137
nominal induced E.M.F., 243
short circuit test, 137

Amortisseur, 305

Armature, back reactance, 263
cross reactance, 263

reactance, polyphaser, 260

reaction, detail, 258
true reactance of, 242

Asynchronous generator, 190

Auto-transformer, 78

B.-H. curve for iron, 47
Back pressure, 16

Balance, 146

Beats, 279
Breadth coefficient, 105

Cascade working of induction motors,
228

Characteristic, external, 244

locked, of induction motor, 206

mechanical, of induction motor, 187
mechanical, of monophase motor,

225
.

open circuit, of alternator, 243
short circuit, of alternator, 243

Choking coil, 46
Combined test, alternator, 138

rotary, 320

transformer, 87
Common Iron Core in Polyphase

Transformer, 162
Commutator for small phase angles, 221

Compensator, 78

Compounding, pole piece, 256

transformer, 251

Concatenation, 229

Core loss, 48

Cranes, induction motor for, 188

Current-transformer, 80

Cycle of core, determination of, experi-

mentally, 131, 133

Degrees, electrical, 111
Distributed winding, 108

Dynamometer, electric, 5

Eddy currents, loss due to, 53
Effective pressure, 16

Efficiency of alternator, 136
induction motor, 222

rotary converter, 320

transformer, 85, 86, 87

Electrometer, use as wattmeter, 40
Electrostatic voltmeter, 8

E.M.F., nominal induced, of alternator,
243

Equivalent simple harmonic current and

pressure, 29
External characteristic, 244

Form Factor, 120

Harmonic quantities, resolution of, 12
summation of, 12

representation of, 2

simple, E. M.F., 2

Harmonics, 114
absence of even, 116
effect on current, 117

power due to, 120

Hemitropic winding, 111

Heyland diagram, 191, 195

experimental determination of, 198
slip, 193, 197

torque, 193, 197
Hot wire instruments, 7

Hunting, 277

rotary converter, 321

Hysteresis test of iron, wattmeter
method, 91

Hysteretic lead, angle of, 48, 51

Hysteretic loss and induction, curve of
50
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Impedance, definition, 17

equivalent, of induction motor, 207

equivalent, of transformer, 68

synchronous, 244

triangle, 19

Impressed pressure, definition, 16

Induction curve of alternator, 103
Induction motor

for cranes, 188
concatenation or cascade, 228

dynamo action, 188
effect of want of phase balance, 205

efficiency, 222

equivalent reactance, 207

equivalent resistance, 207
fractional slip, 207
ideal winding, 173
the induced E.M.F., 175

leakage fluxes, 178
locked characteristic, 206
mechanical characteristic, 187

multipolar fields, 218
no-load test, 198, 203

output, expression for, 210

phase relations of currents, 176

practical form of, 190

prediction of performance of, 213

representation of flux belt, 176

running condition, 184

slip, 168
standstill test, 198, 206

starting condition, 185

starting of, 219
stator current, expression for, 211

synchronous speed of, 169

torque, expression for, 183, 209
vector diagram, 180

Instantaneous curves, determination

of, 123

Integral of vector quantity, representa-
tion of, 13

Lag, angle of, 10
Lead, angle of, 10

Leakage Flux, armature, 242
induction motor, 178

transformer, 61

Mean value of an alternating quantity,
4

Mean values, theorem on, 33
Mesh connection, 150

Meters, rotating field, 230

polyphase, 238

quadrature devices, 235-6

sliding field, 233

torque, 231

Monophase motor, 224
fluxband in, 225
mechanical characteristic, 225

starting, 227
Motor, induction, see Induction motor,

monophase, 224

Motor, series, 94

synchronous, 282

Motor-generator, 322

Multipolar fields in alternator, 109
in induction motor, 218

Neutral point, 147, 313
Neutral point resistance, 152
No-load test alternator, 137

induction motor, 198, 203

transformer, 72
Nominal induced E.M.F., 243

Open circuit characteristic of alterna-

tor, 243

Open circuit test, see No-load test

Oscillations, see Synchronous motor, 299

Oscillograph, 127

Parallel working of alternators, con-

ditions, 273

Parallelizing, process of, 277
Periodic time, 1

Periodicity measurer, 9
Phase angle, maximum value in choking

coil, 56
measurement of small, 39, 221

Phase meter, 238
Phase transformations, 158
Pitch of poles, 110
Point to point method, 123

Power, apparent, 29

fictitious, 45

mean, 28

electrometer, measure of, 40
three voltmeter and ammeter
methods, 38

polyphase circuit, 152
see also Wattmeter

Power component of current, 28
Power factor, 29

condition of unit, 31

Kate of change of vector, representation,
13

Reactance (definition), 17

back, of armature, 263

cross, of armature, 263

equivalent, in induction motor, 207

pressure, 16

synchronous, 242

true, of armature, 242
Eeaction of armature, 240

Kegulation of transformer, 59

Eesistance, equivalent, in induction

motor, 207

equivalent, in transformer, 67

Eesonance, 18, 119

Rotary converter, 310
current relations, 314

hunting, 321

efficiency, 320
E.M.F. relations, 310
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Rotary converter
ohmic loss. 315

pressure regulation, 318

starting, 317

Rotating field, 164

Rotating field motor, see Induction

motor, 167

Saturation curve, 243
Series A. c. motor, 94
Short circuit characteristic of alter-

nator, 243
Short circuit test of alternator, 137

transformer, 68

Slip, see Induction motor, 168, 207
Star connection, 149

Starting, induction motor, 219

monophase motor, 227

rotary converter, 317

Stray power method, 86

Surging, 277

Synchronous impedance, 244

Synchronous motor, 247, 282
maximum output, 289
motor E.M.F., construction, 292
motor E.M.F. for maximum power

supplied, 290

oscillations, free, damped, 303

oscillations, free, undamped, 299
oscillations, forced, 307

power, 285
"V" curves, 294, 298

Synchronous reactance, 242

Temperature, effect on iron, 90

Three-phase dynamo, 147

Time, positive value of, 3

Torque with rotating field, 167
induction motor, 183, 193, 197, 209

Transformer, 56

Transformer, air core, 80
combined test, 87
common core, 162
for current, 80

efficiency, 85

equivalent impedance, 68

equivalent resistance, 67

leakage flux, 61

leakage equivalent to reactance, 67
losses, 85
no-load test, 72

open circuit test, 71

polyphase, 156

primary of, 56
ratio of transformation, 59

regulation, 59

regulation and leakage, 65

rejection of waste, 90

secondary of, 56
short circuit test, 68

six-phase, 160

stray power method, 86

twelve-phase, 161
two- to three-phase, 158

Two-phase dynamo, 143

Unbalanced load, measure of, 154

"V" curves, 294, 298
Virtual value of an alternating quantity,

definition, 4

complex E.M.F., 119

Wattless component of current, 28
Wattmeter (ordinary type), 34

compensator in, 35
determination of constant, 35

error, 35
iron cored, 81

rotating field, 238
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